Machine Learning Predictors for Min-Entropy Estimation.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-02 DOI:10.3390/e27020156
Javier Blanco-Romero, Vicente Lorenzo, Florina Almenares Mendoza, Daniel Díaz-Sánchez
{"title":"Machine Learning Predictors for Min-Entropy Estimation.","authors":"Javier Blanco-Romero, Vicente Lorenzo, Florina Almenares Mendoza, Daniel Díaz-Sánchez","doi":"10.3390/e27020156","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the application of machine learning predictors for the estimation of min-entropy in random number generators (RNGs), a key component in cryptographic applications where accurate entropy assessment is essential for cybersecurity. Our research indicates that these predictors, and indeed any predictor that leverages sequence correlations, primarily estimate average min-entropy, a metric not extensively studied in this context. We explore the relationship between average min-entropy and the traditional min-entropy, focusing on their dependence on the number of target bits being predicted. Using data from generalized binary autoregressive models, a subset of Markov processes, we demonstrate that machine learning models (including a hybrid of convolutional and recurrent long short-term memory layers and the transformer-based GPT-2 model) outperform traditional NIST SP 800-90B predictors in certain scenarios. Our findings underscore the importance of considering the number of target bits in min-entropy assessment for RNGs and highlight the potential of machine learning approaches in enhancing entropy estimation techniques for improved cryptographic security.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020156","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the application of machine learning predictors for the estimation of min-entropy in random number generators (RNGs), a key component in cryptographic applications where accurate entropy assessment is essential for cybersecurity. Our research indicates that these predictors, and indeed any predictor that leverages sequence correlations, primarily estimate average min-entropy, a metric not extensively studied in this context. We explore the relationship between average min-entropy and the traditional min-entropy, focusing on their dependence on the number of target bits being predicted. Using data from generalized binary autoregressive models, a subset of Markov processes, we demonstrate that machine learning models (including a hybrid of convolutional and recurrent long short-term memory layers and the transformer-based GPT-2 model) outperform traditional NIST SP 800-90B predictors in certain scenarios. Our findings underscore the importance of considering the number of target bits in min-entropy assessment for RNGs and highlight the potential of machine learning approaches in enhancing entropy estimation techniques for improved cryptographic security.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信