{"title":"Hidden Markov Neural Networks.","authors":"Lorenzo Rimella, Nick Whiteley","doi":"10.3390/e27020168","DOIUrl":null,"url":null,"abstract":"<p><p>We define an evolving in-time Bayesian neural network called a Hidden Markov Neural Network, which addresses the crucial challenge in time-series forecasting and continual learning: striking a balance between adapting to new data and appropriately forgetting outdated information. This is achieved by modelling the weights of a neural network as the hidden states of a Hidden Markov model, with the observed process defined by the available data. A filtering algorithm is employed to learn a variational approximation of the evolving-in-time posterior distribution over the weights. By leveraging a sequential variant of Bayes by Backprop, enriched with a stronger regularization technique called variational DropConnect, Hidden Markov Neural Networks achieve robust regularization and scalable inference. Experiments on MNIST, dynamic classification tasks, and next-frame forecasting in videos demonstrate that Hidden Markov Neural Networks provide strong predictive performance while enabling effective uncertainty quantification.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020168","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We define an evolving in-time Bayesian neural network called a Hidden Markov Neural Network, which addresses the crucial challenge in time-series forecasting and continual learning: striking a balance between adapting to new data and appropriately forgetting outdated information. This is achieved by modelling the weights of a neural network as the hidden states of a Hidden Markov model, with the observed process defined by the available data. A filtering algorithm is employed to learn a variational approximation of the evolving-in-time posterior distribution over the weights. By leveraging a sequential variant of Bayes by Backprop, enriched with a stronger regularization technique called variational DropConnect, Hidden Markov Neural Networks achieve robust regularization and scalable inference. Experiments on MNIST, dynamic classification tasks, and next-frame forecasting in videos demonstrate that Hidden Markov Neural Networks provide strong predictive performance while enabling effective uncertainty quantification.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.