Artificial intelligence system for automatic tooth detection and numbering in the mixed dentition in CBCT.

IF 2.2 2区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
S Ozudogru, E Gulsen, T Mahyaddinova, F N Kizilay, I T Gulsen, A Kuran, E Bilgir, A F Aslan, O Celik, I S Bayrakdar
{"title":"Artificial intelligence system for automatic tooth detection and numbering in the mixed dentition in CBCT.","authors":"S Ozudogru, E Gulsen, T Mahyaddinova, F N Kizilay, I T Gulsen, A Kuran, E Bilgir, A F Aslan, O Celik, I S Bayrakdar","doi":"10.23804/ejpd.2025.2292","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To evaluate the effectiveness and accuracy of artificial intelligence (AI) by automating tooth segmentation in CBCT volumes of paediatric patients with mixed dentition, using nnU-Netv2 algorithm.</p><p><strong>Background: </strong>Identifying and numbering teeth, the initial step in treatment planning, demands an efficient method.</p><p><strong>Conclusion: </strong>AI models offer a promising approach in the mixed dentition period and play a valuable role in dentists' planning in terms of time and effort.</p>","PeriodicalId":11930,"journal":{"name":"European journal of paediatric dentistry","volume":" ","pages":"1"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of paediatric dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23804/ejpd.2025.2292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To evaluate the effectiveness and accuracy of artificial intelligence (AI) by automating tooth segmentation in CBCT volumes of paediatric patients with mixed dentition, using nnU-Netv2 algorithm.

Background: Identifying and numbering teeth, the initial step in treatment planning, demands an efficient method.

Conclusion: AI models offer a promising approach in the mixed dentition period and play a valuable role in dentists' planning in terms of time and effort.

CBCT混合牙列自动检测与编号的人工智能系统。
目的:利用nnU-Netv2算法对混合牙列患儿的CBCT体积进行牙齿分割,评价人工智能(AI)的有效性和准确性。背景:牙的识别和编号是治疗计划的第一步,需要一种有效的方法。结论:人工智能模型在混合牙列期提供了一种有前途的方法,在牙医的时间和精力规划方面发挥了宝贵的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European journal of paediatric dentistry
European journal of paediatric dentistry DENTISTRY, ORAL SURGERY & MEDICINE-PEDIATRICS
CiteScore
4.60
自引率
19.40%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The aim and scope of the European Journal of Paediatric Dentistry is to promote research in all aspects of dentistry related to children, including interceptive orthodontics and studies on children and young adults with special needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信