{"title":"A Quantum Probability Approach to Improving Human-AI Decision Making.","authors":"Scott Humr, Mustafa Canan, Mustafa Demir","doi":"10.3390/e27020152","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence is set to incorporate additional decision space that has traditionally been the purview of humans. However, AI systems that support decision making also entail the rationalization of AI outputs by humans. Yet, incongruencies between AI and human rationalization processes may introduce uncertainties in human decision making, which require new conceptualizations to improve the predictability of these interactions. The application of quantum probability theory (QPT) to human cognition is on the ascent and warrants potential consideration to human-AI decision making to improve these outcomes. This perspective paper explores how QPT may be applied to human-AI interactions and contributes by integrating these concepts into human-in-the-loop decision making. To capture this and offer a more comprehensive conceptualization, we use human-in-the-loop constructs to explicate how recent applications of QPT can ameliorate the models of interaction by providing a novel way to capture these behaviors. Followed by a summary of the challenges posed by human-in-the-loop systems, we discuss newer theories that advance models of the cognitive system by using quantum probability formalisms. We conclude by outlining areas of promising future research in human-AI decision making in which the proposed methods may apply.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020152","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence is set to incorporate additional decision space that has traditionally been the purview of humans. However, AI systems that support decision making also entail the rationalization of AI outputs by humans. Yet, incongruencies between AI and human rationalization processes may introduce uncertainties in human decision making, which require new conceptualizations to improve the predictability of these interactions. The application of quantum probability theory (QPT) to human cognition is on the ascent and warrants potential consideration to human-AI decision making to improve these outcomes. This perspective paper explores how QPT may be applied to human-AI interactions and contributes by integrating these concepts into human-in-the-loop decision making. To capture this and offer a more comprehensive conceptualization, we use human-in-the-loop constructs to explicate how recent applications of QPT can ameliorate the models of interaction by providing a novel way to capture these behaviors. Followed by a summary of the challenges posed by human-in-the-loop systems, we discuss newer theories that advance models of the cognitive system by using quantum probability formalisms. We conclude by outlining areas of promising future research in human-AI decision making in which the proposed methods may apply.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.