{"title":"Innovative 3D printing technologies and advanced materials revolutionizing orthopedic surgery: current applications and future directions.","authors":"Bo Cong, Haiguang Zhang","doi":"10.3389/fbioe.2025.1542179","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) printing has rapidly become a transformative force in orthopedic surgery, enabling the creation of highly customized and precise medical implants and surgical tools. This review aims to provide a more systematic and comprehensive perspective on emerging 3D printing technologies-ranging from extrusion-based methods and bioink printing to powder bed fusion-and the broadening array of materials, including bioactive agents and cell-laden inks. We highlight how these technologies and materials are employed to fabricate patient-specific implants, surgical guides, prosthetics, and advanced tissue engineering scaffolds, significantly enhancing surgical outcomes and patient recovery. Despite notable progress, the field faces challenges such as optimizing mechanical properties, ensuring structural integrity, addressing regulatory complexities across different regions, and considering environmental impacts and cost barriers, especially in low-resource settings. Looking ahead, innovations in smart materials and functionally graded materials (FGMs), along with advancements in bioprinting, hold promise for overcoming these obstacles and expanding the capabilities of 3D printing in orthopedics. This review underscores the pivotal role of interdisciplinary collaboration and ongoing research in harnessing the full potential of additive manufacturing, ultimately paving the way for more effective, personalized, and durable orthopedic solutions that improve patient quality of life.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1542179"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1542179","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) printing has rapidly become a transformative force in orthopedic surgery, enabling the creation of highly customized and precise medical implants and surgical tools. This review aims to provide a more systematic and comprehensive perspective on emerging 3D printing technologies-ranging from extrusion-based methods and bioink printing to powder bed fusion-and the broadening array of materials, including bioactive agents and cell-laden inks. We highlight how these technologies and materials are employed to fabricate patient-specific implants, surgical guides, prosthetics, and advanced tissue engineering scaffolds, significantly enhancing surgical outcomes and patient recovery. Despite notable progress, the field faces challenges such as optimizing mechanical properties, ensuring structural integrity, addressing regulatory complexities across different regions, and considering environmental impacts and cost barriers, especially in low-resource settings. Looking ahead, innovations in smart materials and functionally graded materials (FGMs), along with advancements in bioprinting, hold promise for overcoming these obstacles and expanding the capabilities of 3D printing in orthopedics. This review underscores the pivotal role of interdisciplinary collaboration and ongoing research in harnessing the full potential of additive manufacturing, ultimately paving the way for more effective, personalized, and durable orthopedic solutions that improve patient quality of life.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.