Correlated and Anticorrelated Binocular Disparity Modulate GABA+ and Glutamate/glutamine Concentrations in the Human Visual Cortex.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-02-25 DOI:10.1523/ENEURO.0355-24.2025
Jacek Matuszewski, Ivan Alvarez, William T Clarke, Andrew J Parker, Holly Bridge, I Betina Ip
{"title":"Correlated and Anticorrelated Binocular Disparity Modulate GABA+ and Glutamate/glutamine Concentrations in the Human Visual Cortex.","authors":"Jacek Matuszewski, Ivan Alvarez, William T Clarke, Andrew J Parker, Holly Bridge, I Betina Ip","doi":"10.1523/ENEURO.0355-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Binocular disparity is used for perception and action in three dimensions. Neurons in the primary visual cortex respond to binocular disparity in random dot patterns, even when the contrast is inverted between eyes (false depth cue). In contrast, neurons in the ventral stream largely cease to respond to false depth cues. This study evaluated whether GABAergic inhibition is involved in suppressing false depth cues in the human ventral visual cortex.We compared GABAergic inhibition (GABA+) and glutamatergic excitation (Glx) during the viewing of correlated and anticorrelated binocular disparity in 18 participants using single voxel proton magnetic-resonance spectroscopy (MRS). Measurements were taken from the early visual cortex (EVC) and the lateral occipital cortex (LO). Three visual conditions were presented per voxel location: correlated binocular disparity; anticorrelated binocular disparity; or a blank grey screen with a fixation cross. To identify differences in neurochemistry, GABA+ or Glx levels were compared across viewing conditions.In EVC, correlated disparity increased Glx over anticorrelated and rest conditions, also mirrored in the Glx/GABA+ ratio. In LO, anticorrelated disparity decreased GABA+ and increased Glx. The Glx/GABA+ ratio showed increased excitatory over inhibitory drive to anticorrelated disparity in LO. Glx during viewing of anticorrelation in LO was predictive of object-selective BOLD-activity in the same region.We provide evidence that early and ventral visual cortices change GABA+ and Glx concentrations during presentation of correlated and anticorrelated disparity, suggesting a contribution of cortical excitation and inhibition to disparity selectivity.<b>Significance Statement</b> The visual system must correctly match elements from the left and right eye for proper reconstruction of binocular depth. At the earliest part of binocular processing, false matches can activate depth detectors, however, the activation to false matches is absent in the ventral visual stream. We tested whether GABAergic inhibition contributes to the suppression of false matches in the ventral stream by measuring GABAergic inhibition and glutamatergic excitation in the human visual cortex during presentation of correct and false matches. Correct matches increased excitation in response in the early visual cortex, and false matches increased excitation and decreased inhibition in the ventral visual cortex. These results suggest a role for excitation and inhibition in distinguishing depth cues for stereoscopic vision.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0355-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Binocular disparity is used for perception and action in three dimensions. Neurons in the primary visual cortex respond to binocular disparity in random dot patterns, even when the contrast is inverted between eyes (false depth cue). In contrast, neurons in the ventral stream largely cease to respond to false depth cues. This study evaluated whether GABAergic inhibition is involved in suppressing false depth cues in the human ventral visual cortex.We compared GABAergic inhibition (GABA+) and glutamatergic excitation (Glx) during the viewing of correlated and anticorrelated binocular disparity in 18 participants using single voxel proton magnetic-resonance spectroscopy (MRS). Measurements were taken from the early visual cortex (EVC) and the lateral occipital cortex (LO). Three visual conditions were presented per voxel location: correlated binocular disparity; anticorrelated binocular disparity; or a blank grey screen with a fixation cross. To identify differences in neurochemistry, GABA+ or Glx levels were compared across viewing conditions.In EVC, correlated disparity increased Glx over anticorrelated and rest conditions, also mirrored in the Glx/GABA+ ratio. In LO, anticorrelated disparity decreased GABA+ and increased Glx. The Glx/GABA+ ratio showed increased excitatory over inhibitory drive to anticorrelated disparity in LO. Glx during viewing of anticorrelation in LO was predictive of object-selective BOLD-activity in the same region.We provide evidence that early and ventral visual cortices change GABA+ and Glx concentrations during presentation of correlated and anticorrelated disparity, suggesting a contribution of cortical excitation and inhibition to disparity selectivity.Significance Statement The visual system must correctly match elements from the left and right eye for proper reconstruction of binocular depth. At the earliest part of binocular processing, false matches can activate depth detectors, however, the activation to false matches is absent in the ventral visual stream. We tested whether GABAergic inhibition contributes to the suppression of false matches in the ventral stream by measuring GABAergic inhibition and glutamatergic excitation in the human visual cortex during presentation of correct and false matches. Correct matches increased excitation in response in the early visual cortex, and false matches increased excitation and decreased inhibition in the ventral visual cortex. These results suggest a role for excitation and inhibition in distinguishing depth cues for stereoscopic vision.

求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信