{"title":"The Nonlinear Dynamics and Chaos Control of Pricing Games in Group Robot Systems.","authors":"Chen Wang, Yi Sun, Ying Han, Chao Zhang","doi":"10.3390/e27020164","DOIUrl":null,"url":null,"abstract":"<p><p>System stability control in resource allocation is a critical issue in group robot systems. Against this backdrop, this study investigates the nonlinear dynamics and chaotic phenomena that arise during pricing games among finitely rational group robots and proposes control strategies to mitigate chaotic behaviors. A system model and a business model for group robots are developed based on market mechanism mapping, and the dynamics of resource allocation are formulated as a second-order discrete nonlinear system using game theory. Numerical simulations reveal that small perturbations in system parameters, such as pricing adjustment speed, product demand coefficients, and resource substitution coefficients, can induce chaotic behaviors. To address these chaotic phenomena, a control method combining state feedback and parameter adjustment is proposed. This approach dynamically tunes the state feedback intensity of the system via a control parameter M, thereby delaying bifurcations and suppressing chaotic behaviors. It ensures that the distribution of system eigenvalues satisfies stability conditions, allowing control over unstable periodic orbits and period-doubling bifurcations. Simulation results demonstrate that the proposed control method effectively delays period-doubling bifurcations and stabilizes unstable periodic orbits in chaotic attractors. The stability of the system's Nash equilibrium is significantly improved, and the parameter range for equilibrium pricing is expanded. These findings provide essential theoretical foundations and practical guidance for the design and application of group robot systems.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854078/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020164","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
System stability control in resource allocation is a critical issue in group robot systems. Against this backdrop, this study investigates the nonlinear dynamics and chaotic phenomena that arise during pricing games among finitely rational group robots and proposes control strategies to mitigate chaotic behaviors. A system model and a business model for group robots are developed based on market mechanism mapping, and the dynamics of resource allocation are formulated as a second-order discrete nonlinear system using game theory. Numerical simulations reveal that small perturbations in system parameters, such as pricing adjustment speed, product demand coefficients, and resource substitution coefficients, can induce chaotic behaviors. To address these chaotic phenomena, a control method combining state feedback and parameter adjustment is proposed. This approach dynamically tunes the state feedback intensity of the system via a control parameter M, thereby delaying bifurcations and suppressing chaotic behaviors. It ensures that the distribution of system eigenvalues satisfies stability conditions, allowing control over unstable periodic orbits and period-doubling bifurcations. Simulation results demonstrate that the proposed control method effectively delays period-doubling bifurcations and stabilizes unstable periodic orbits in chaotic attractors. The stability of the system's Nash equilibrium is significantly improved, and the parameter range for equilibrium pricing is expanded. These findings provide essential theoretical foundations and practical guidance for the design and application of group robot systems.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.