The Nonlinear Dynamics and Chaos Control of Pricing Games in Group Robot Systems.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-04 DOI:10.3390/e27020164
Chen Wang, Yi Sun, Ying Han, Chao Zhang
{"title":"The Nonlinear Dynamics and Chaos Control of Pricing Games in Group Robot Systems.","authors":"Chen Wang, Yi Sun, Ying Han, Chao Zhang","doi":"10.3390/e27020164","DOIUrl":null,"url":null,"abstract":"<p><p>System stability control in resource allocation is a critical issue in group robot systems. Against this backdrop, this study investigates the nonlinear dynamics and chaotic phenomena that arise during pricing games among finitely rational group robots and proposes control strategies to mitigate chaotic behaviors. A system model and a business model for group robots are developed based on market mechanism mapping, and the dynamics of resource allocation are formulated as a second-order discrete nonlinear system using game theory. Numerical simulations reveal that small perturbations in system parameters, such as pricing adjustment speed, product demand coefficients, and resource substitution coefficients, can induce chaotic behaviors. To address these chaotic phenomena, a control method combining state feedback and parameter adjustment is proposed. This approach dynamically tunes the state feedback intensity of the system via a control parameter M, thereby delaying bifurcations and suppressing chaotic behaviors. It ensures that the distribution of system eigenvalues satisfies stability conditions, allowing control over unstable periodic orbits and period-doubling bifurcations. Simulation results demonstrate that the proposed control method effectively delays period-doubling bifurcations and stabilizes unstable periodic orbits in chaotic attractors. The stability of the system's Nash equilibrium is significantly improved, and the parameter range for equilibrium pricing is expanded. These findings provide essential theoretical foundations and practical guidance for the design and application of group robot systems.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854078/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020164","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

System stability control in resource allocation is a critical issue in group robot systems. Against this backdrop, this study investigates the nonlinear dynamics and chaotic phenomena that arise during pricing games among finitely rational group robots and proposes control strategies to mitigate chaotic behaviors. A system model and a business model for group robots are developed based on market mechanism mapping, and the dynamics of resource allocation are formulated as a second-order discrete nonlinear system using game theory. Numerical simulations reveal that small perturbations in system parameters, such as pricing adjustment speed, product demand coefficients, and resource substitution coefficients, can induce chaotic behaviors. To address these chaotic phenomena, a control method combining state feedback and parameter adjustment is proposed. This approach dynamically tunes the state feedback intensity of the system via a control parameter M, thereby delaying bifurcations and suppressing chaotic behaviors. It ensures that the distribution of system eigenvalues satisfies stability conditions, allowing control over unstable periodic orbits and period-doubling bifurcations. Simulation results demonstrate that the proposed control method effectively delays period-doubling bifurcations and stabilizes unstable periodic orbits in chaotic attractors. The stability of the system's Nash equilibrium is significantly improved, and the parameter range for equilibrium pricing is expanded. These findings provide essential theoretical foundations and practical guidance for the design and application of group robot systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信