The Epistemic Uncertainty Gradient in Spaces of Random Projections.

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-01 DOI:10.3390/e27020144
Jeffrey F Queißer, Jun Tani, Jochen J Steil
{"title":"The Epistemic Uncertainty Gradient in Spaces of Random Projections.","authors":"Jeffrey F Queißer, Jun Tani, Jochen J Steil","doi":"10.3390/e27020144","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a novel approach to handling epistemic uncertainty estimates with motivation from Bayesian linear regression. We propose treating the model-dependent variance in the predictive distribution-commonly associated with epistemic uncertainty-as a model for the underlying data distribution. Using high-dimensional random feature transformations, this approach allows for a computationally efficient, parameter-free representation of arbitrary data distributions. This allows assessing whether a query point lies within the distribution, which can also provide insights into outlier detection and generalization tasks. Furthermore, given an initial input, minimizing the uncertainty using gradient descent offers a new method of querying data points that are close to the initial input and belong to the distribution resembling the training data, much like auto-completion in associative networks. We extend the proposed method to applications such as local Gaussian approximations, input-output regression, and even a mechanism for unlearning of data. This reinterpretation of uncertainty, alongside the geometric insights it provides, offers an innovative and novel framework for addressing classical machine learning challenges.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020144","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel approach to handling epistemic uncertainty estimates with motivation from Bayesian linear regression. We propose treating the model-dependent variance in the predictive distribution-commonly associated with epistemic uncertainty-as a model for the underlying data distribution. Using high-dimensional random feature transformations, this approach allows for a computationally efficient, parameter-free representation of arbitrary data distributions. This allows assessing whether a query point lies within the distribution, which can also provide insights into outlier detection and generalization tasks. Furthermore, given an initial input, minimizing the uncertainty using gradient descent offers a new method of querying data points that are close to the initial input and belong to the distribution resembling the training data, much like auto-completion in associative networks. We extend the proposed method to applications such as local Gaussian approximations, input-output regression, and even a mechanism for unlearning of data. This reinterpretation of uncertainty, alongside the geometric insights it provides, offers an innovative and novel framework for addressing classical machine learning challenges.

随机投影空间中的认知不确定性梯度。
这项工作提出了一种新的方法来处理从贝叶斯线性回归动机的认知不确定性估计。我们建议将预测分布中的模型相关方差(通常与认知不确定性相关)作为底层数据分布的模型。使用高维随机特征变换,这种方法允许对任意数据分布进行计算效率高、无参数的表示。这允许评估查询点是否位于分布内,这也可以为离群值检测和泛化任务提供见解。此外,给定初始输入,使用梯度下降最小化不确定性提供了一种新的方法来查询接近初始输入且属于与训练数据相似的分布的数据点,很像关联网络中的自动补全。我们将提出的方法扩展到局部高斯近似、输入-输出回归,甚至是数据遗忘机制等应用中。这种对不确定性的重新解释,以及它提供的几何见解,为解决经典机器学习挑战提供了一个创新的新框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信