Nanosized Ginger-Derived Phenolic Zingerone Obstructs Cell Cycle G2/M Progression and Initiates Apoptosis in Human Colorectal Cancer.

IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES
Jui-Ho Wang, Yun-Wen Chen, Shuchen Hsieh, Mei-Lang Kung
{"title":"Nanosized Ginger-Derived Phenolic Zingerone Obstructs Cell Cycle G2/M Progression and Initiates Apoptosis in Human Colorectal Cancer.","authors":"Jui-Ho Wang, Yun-Wen Chen, Shuchen Hsieh, Mei-Lang Kung","doi":"10.1002/tox.24470","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) has become one of the most arduous challenges in contemporary cancer treatment. In nanomedicine, biomedical methodologies and nanomaterials are combined to develop novel and effective treatments for illnesses, infections, and cancer. The characteristics of nanotechnology are promising for addressing the urgent problems of modern cancer therapeutics, such as tumor recurrence, multidrug resistance, and the limited accessibility of drugs to tumor tissue. Plant-derived natural chemicals, termed phytochemicals, have bioactive characteristics, including anticarcinogenesis, promoted cell apoptosis, antioxidation, antiproliferation, and anti-inflammatory effects. Zingerone is a phenolic compound; it is one of the nonvolatile pungent constituents of ginger and has various pharmacological activities. Here, we fabricated phytochemical-derived zingerone nanoparticles (NPs) and explored their anti-cell viability and anti-tumorigenicity effects on human CRC LoVo and HCT116 cell lines. Moreover, zingerone NPs significantly inhibited cell viability and in vitro tumorigenicity. Next, flow cytometry analysis revealed that zingerone NPs markedly suppressed cell cycle progression in the G2/M phase compared to the G1/S phase and significantly promoted cell apoptosis in a dose-dependent manner in these CRC cell lines. Western blot analysis also suggested that zingerone NPs mediate cell apoptosis by upregulating caspase 3/PARP signaling. Additionally, zingerone NPs significantly restricted CDC25C-mediated CDK1/Cyclin B1 signaling activation in the G2/M phase and Cyclin D/CDK2/Cyclin A signaling downregulation in the G1/S phase. Zingerone NP-mediated p21 upregulation also decreased CDK activity and interfered with cell cycle progression. Indeed, TCGA data analysis also suggested that CDC25C and CDK1 upregulation were correlated with advanced tumor stage in colorectal cancer patients. Taken together, these results indicated that zingerone NPs significantly disrupt cell cycle progression and induce apoptosis in human CRC cells. Our findings indicate that phytochemical-derived zingerone NPs may serve as a potential chemopreventive adjuvant agent and therapeutic strategy for human colorectal cancer.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/tox.24470","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) has become one of the most arduous challenges in contemporary cancer treatment. In nanomedicine, biomedical methodologies and nanomaterials are combined to develop novel and effective treatments for illnesses, infections, and cancer. The characteristics of nanotechnology are promising for addressing the urgent problems of modern cancer therapeutics, such as tumor recurrence, multidrug resistance, and the limited accessibility of drugs to tumor tissue. Plant-derived natural chemicals, termed phytochemicals, have bioactive characteristics, including anticarcinogenesis, promoted cell apoptosis, antioxidation, antiproliferation, and anti-inflammatory effects. Zingerone is a phenolic compound; it is one of the nonvolatile pungent constituents of ginger and has various pharmacological activities. Here, we fabricated phytochemical-derived zingerone nanoparticles (NPs) and explored their anti-cell viability and anti-tumorigenicity effects on human CRC LoVo and HCT116 cell lines. Moreover, zingerone NPs significantly inhibited cell viability and in vitro tumorigenicity. Next, flow cytometry analysis revealed that zingerone NPs markedly suppressed cell cycle progression in the G2/M phase compared to the G1/S phase and significantly promoted cell apoptosis in a dose-dependent manner in these CRC cell lines. Western blot analysis also suggested that zingerone NPs mediate cell apoptosis by upregulating caspase 3/PARP signaling. Additionally, zingerone NPs significantly restricted CDC25C-mediated CDK1/Cyclin B1 signaling activation in the G2/M phase and Cyclin D/CDK2/Cyclin A signaling downregulation in the G1/S phase. Zingerone NP-mediated p21 upregulation also decreased CDK activity and interfered with cell cycle progression. Indeed, TCGA data analysis also suggested that CDC25C and CDK1 upregulation were correlated with advanced tumor stage in colorectal cancer patients. Taken together, these results indicated that zingerone NPs significantly disrupt cell cycle progression and induce apoptosis in human CRC cells. Our findings indicate that phytochemical-derived zingerone NPs may serve as a potential chemopreventive adjuvant agent and therapeutic strategy for human colorectal cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Toxicology
Environmental Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
8.90%
发文量
261
审稿时长
4.5 months
期刊介绍: The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are: Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration; Natural toxins and their impacts; Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation; Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard; Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信