Ziyuan Niu, Georgios Kementzidis, Miriam Rafailovich, Marcia Simon, Evangelos Papadopoulos, Bertal H Aktas, Yuefan Deng
{"title":"Simulations of pH and thermal effects on SARS-CoV-2 spike glycoprotein.","authors":"Ziyuan Niu, Georgios Kementzidis, Miriam Rafailovich, Marcia Simon, Evangelos Papadopoulos, Bertal H Aktas, Yuefan Deng","doi":"10.3389/fmolb.2025.1545041","DOIUrl":null,"url":null,"abstract":"<p><p>We performed triplicate and long-time all-atom molecular dynamics simulations to investigate the structures and dynamics of the SARS-CoV-2 spike glycoprotein (S-protein) for a broad range of pH = 1 through 11 and temperatures of 3°C through 75°C. This study elucidates the complex interplay between pH and thermal effects on S-protein structures, with implications for its behavior under diverse conditions, and identifies the RBD as a primary region of the structural deviations. We found: 1) Structural deviations in the S-protein backbone at pH = 1 are 210% greater than those at pH = 7 at 75°C, with most of the deviations appearing in the receptor-binding domain (RBD). Smaller structural changes are observed at pH = 3 and 11. 2) The pH and thermal conditions impact on the protein structures: substantial acidic and basic conditions expand the protein's solvent exposure, while high heat contracts. This effect is primarily pH-driven at extreme acidity and thermo-driven at moderate pH. 3) The Gibbs free energy landscape reveals that pH as the main driver of structural changes. 4) The parametrized methods enable the predictions of the S-protein properties at any reasonable pH and thermal conditions without explicit MD simulations.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1545041"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1545041","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We performed triplicate and long-time all-atom molecular dynamics simulations to investigate the structures and dynamics of the SARS-CoV-2 spike glycoprotein (S-protein) for a broad range of pH = 1 through 11 and temperatures of 3°C through 75°C. This study elucidates the complex interplay between pH and thermal effects on S-protein structures, with implications for its behavior under diverse conditions, and identifies the RBD as a primary region of the structural deviations. We found: 1) Structural deviations in the S-protein backbone at pH = 1 are 210% greater than those at pH = 7 at 75°C, with most of the deviations appearing in the receptor-binding domain (RBD). Smaller structural changes are observed at pH = 3 and 11. 2) The pH and thermal conditions impact on the protein structures: substantial acidic and basic conditions expand the protein's solvent exposure, while high heat contracts. This effect is primarily pH-driven at extreme acidity and thermo-driven at moderate pH. 3) The Gibbs free energy landscape reveals that pH as the main driver of structural changes. 4) The parametrized methods enable the predictions of the S-protein properties at any reasonable pH and thermal conditions without explicit MD simulations.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.