Tongyue Duan, Liya Sun, Kaiyue Ding, Qing Zhao, Lujun Xu, Chongbin Liu, Lin Sun
{"title":"Mitochondrial RNA metabolism, a potential therapeutic target for mitochondria-related diseases.","authors":"Tongyue Duan, Liya Sun, Kaiyue Ding, Qing Zhao, Lujun Xu, Chongbin Liu, Lin Sun","doi":"10.1097/CM9.0000000000003516","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>In recent years, the roles of mitochondrial RNA and its associated human diseases have been reported to increase significantly. Treatments based on mtRNA metabolic processes and nuclear gene mutations are thus discussed. The mitochondrial oxidative phosphorylation process is affected by mtRNA metabolism, including mtRNA production, maturation, stabilization, and degradation, which leads to a variety of inherited human mitochondrial diseases. Moreover, mitochondrial diseases are caused by mitochondrial messenger RNA, mitochondrial transfer RNA, and mitochondrial ribosomal RNA gene mutations. This review presents the molecular mechanisms of human mtRNA metabolism and pathological mutations in mtRNA metabolism-related nuclear-encoded/nonencoded genes and mitochondrial DNA mutations to highlight the importance of mitochondrial RNA-related diseases and treatments.</p>","PeriodicalId":10183,"journal":{"name":"Chinese Medical Journal","volume":" ","pages":"808-818"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CM9.0000000000003516","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: In recent years, the roles of mitochondrial RNA and its associated human diseases have been reported to increase significantly. Treatments based on mtRNA metabolic processes and nuclear gene mutations are thus discussed. The mitochondrial oxidative phosphorylation process is affected by mtRNA metabolism, including mtRNA production, maturation, stabilization, and degradation, which leads to a variety of inherited human mitochondrial diseases. Moreover, mitochondrial diseases are caused by mitochondrial messenger RNA, mitochondrial transfer RNA, and mitochondrial ribosomal RNA gene mutations. This review presents the molecular mechanisms of human mtRNA metabolism and pathological mutations in mtRNA metabolism-related nuclear-encoded/nonencoded genes and mitochondrial DNA mutations to highlight the importance of mitochondrial RNA-related diseases and treatments.
期刊介绍:
The Chinese Medical Journal (CMJ) is published semimonthly in English by the Chinese Medical Association, and is a peer reviewed general medical journal for all doctors, researchers, and health workers regardless of their medical specialty or type of employment. Established in 1887, it is the oldest medical periodical in China and is distributed worldwide. The journal functions as a window into China’s medical sciences and reflects the advances and progress in China’s medical sciences and technology. It serves the objective of international academic exchange. The journal includes Original Articles, Editorial, Review Articles, Medical Progress, Brief Reports, Case Reports, Viewpoint, Clinical Exchange, Letter,and News,etc. CMJ is abstracted or indexed in many databases including Biological Abstracts, Chemical Abstracts, Index Medicus/Medline, Science Citation Index (SCI), Current Contents, Cancerlit, Health Plan & Administration, Embase, Social Scisearch, Aidsline, Toxline, Biocommercial Abstracts, Arts and Humanities Search, Nuclear Science Abstracts, Water Resources Abstracts, Cab Abstracts, Occupation Safety & Health, etc. In 2007, the impact factor of the journal by SCI is 0.636, and the total citation is 2315.