Yun Bai, Zhiyao Li, Runqi Liu, Jiayi Feng, Biao Li
{"title":"Crack-Detection Algorithm Integrating Multi-Scale Information Gain with Global-Local Tight-Loose Coupling.","authors":"Yun Bai, Zhiyao Li, Runqi Liu, Jiayi Feng, Biao Li","doi":"10.3390/e27020165","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, an improved target-detection model based on information theory is proposed to address the difficulties of crack-detection tasks, such as slender target shapes, blurred boundaries, and complex backgrounds. By introducing a multi-scale information gain mechanism and a global-local feature coupling strategy, the model has significantly improved feature extraction and expression capabilities. Experimental results show that, on a single-crack dataset, the model's mAP@50 and mAP@50-95 are 1.6% and 0.8% higher than the baseline model RT-DETR, respectively; on a multi-crack dataset, these two indicators are improved by 1.2% and 1.0%, respectively. The proposed method shows good robustness and detection accuracy in complex scenarios, providing new ideas and technical support for in-depth research in the field of crack detection.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020165","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an improved target-detection model based on information theory is proposed to address the difficulties of crack-detection tasks, such as slender target shapes, blurred boundaries, and complex backgrounds. By introducing a multi-scale information gain mechanism and a global-local feature coupling strategy, the model has significantly improved feature extraction and expression capabilities. Experimental results show that, on a single-crack dataset, the model's mAP@50 and mAP@50-95 are 1.6% and 0.8% higher than the baseline model RT-DETR, respectively; on a multi-crack dataset, these two indicators are improved by 1.2% and 1.0%, respectively. The proposed method shows good robustness and detection accuracy in complex scenarios, providing new ideas and technical support for in-depth research in the field of crack detection.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.