{"title":"Critical Relaxation in the Quantum Yang-Lee Edge Singularity.","authors":"Yue-Mei Sun, Xinyu Wang, Liang-Jun Zhai","doi":"10.3390/e27020170","DOIUrl":null,"url":null,"abstract":"<p><p>We study the relaxation dynamics near the critical points of the Yang-Lee edge singularities (YLESs) in the quantum Ising chain in an imaginary longitudinal field with a polarized initial state. We find that scaling behaviors are manifested in the relaxation process after a non-universal transient time. We show that for the paramagnetic Hamiltonian, the magnetization oscillates periodically with the period being inversely proportional to the gap between the lowest energy level; for the ferromagnetic Hamiltonian, the magnetization decays to a saturated value; while for the critical Hamiltonian, the magnetization increases linearly. A scaling theory is developed to describe these scaling properties. In this theory, we show that for a small- and medium-sized system, the scaling behavior is described by the (0+1)-dimensional YLES.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853887/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020170","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the relaxation dynamics near the critical points of the Yang-Lee edge singularities (YLESs) in the quantum Ising chain in an imaginary longitudinal field with a polarized initial state. We find that scaling behaviors are manifested in the relaxation process after a non-universal transient time. We show that for the paramagnetic Hamiltonian, the magnetization oscillates periodically with the period being inversely proportional to the gap between the lowest energy level; for the ferromagnetic Hamiltonian, the magnetization decays to a saturated value; while for the critical Hamiltonian, the magnetization increases linearly. A scaling theory is developed to describe these scaling properties. In this theory, we show that for a small- and medium-sized system, the scaling behavior is described by the (0+1)-dimensional YLES.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.