Evaluation of the molecular mechanism underlying proline metabolic and catabolic pathways and some morpho-physiological traits of tobacco (Nicotiana tabacum L.) plants under arsenic stress.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Nader Adamipour, Farzad Nazari, Ayoub Molaahmad Nalousi, Jaime A Teixeira da Silva
{"title":"Evaluation of the molecular mechanism underlying proline metabolic and catabolic pathways and some morpho-physiological traits of tobacco (Nicotiana tabacum L.) plants under arsenic stress.","authors":"Nader Adamipour, Farzad Nazari, Ayoub Molaahmad Nalousi, Jaime A Teixeira da Silva","doi":"10.1186/s12870-025-06262-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In recent decades, arsenic (As) toxicity has emerged as a significant challenge in many countries. It not only reduces the growth and performance of plants, but also poses a threat to human health. The synthesis of compatible solutes, particularly proline, is a mechanism plants utilize to cope with stress. Investigating the metabolic pathways of proline would deepen our understanding for future molecular breeding or genetic engineering efforts. Therefore, the aim of this study was to explore the metabolic and catabolic pathways of proline, as well as the morpho-physiological traits of tobacco, under As stress.</p><p><strong>Results: </strong>The results revealed a significant decrease in morphological traits and photosynthetic efficiency, chlorophyll content, and total soluble protein content with increasing As concentration. The results also showed that proline content, total soluble carbohydrates, hydrogen peroxide, and malondialdehyde, as well as the activity of two antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased with increasing As concentration. At 10 mg As Kg<sup>-1</sup> soil, the expression of Δ<sup>1</sup>-pyrroline-carboxylate synthetase (P5CS) and P5C reductase (P5CR) genes was not different from the control, but their expression increased significantly at 20 and 40 mg As Kg<sup>-1</sup> soil. At 10 mg As Kg<sup>-1</sup> soil, the expression of proline dehydrogenase (PDH) and P5C dehydrogenase (P5CDH) genes decreased sharply compared to the control but remained unchanged at 20 and 40 mg As Kg<sup>-1</sup> soil. At 10 and 20 mg As Kg<sup>-1</sup> soil, expression of the ornithine δ-aminotransferase (OAT) gene was unchanged compared to the control, but at 40 mg As Kg<sup>-1</sup> soil, it increased sharply.</p><p><strong>Conclusion: </strong>The results showed that the accumulation of proline at the lowest (10 mg As Kg<sup>-1</sup> soil) tested As concentration was due to a decrease in the expression of proline catabolic genes (PDH and P5CDH), while the genes involved in proline synthesis did not play a role. At 20 mg As Kg<sup>-1</sup> soil, proline accumulation was caused by the increased expression of genes (P5CS and P5CR) involved in the glutamate pathway of proline synthesis. Additionally, at the highest concentration of arsenic (40 mg As Kg<sup>-1</sup> soil), the OAT gene, which is active in the ornithine pathway, was also involved in proline synthesis, along with the P5CS and P5CR genes.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"258"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06262-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In recent decades, arsenic (As) toxicity has emerged as a significant challenge in many countries. It not only reduces the growth and performance of plants, but also poses a threat to human health. The synthesis of compatible solutes, particularly proline, is a mechanism plants utilize to cope with stress. Investigating the metabolic pathways of proline would deepen our understanding for future molecular breeding or genetic engineering efforts. Therefore, the aim of this study was to explore the metabolic and catabolic pathways of proline, as well as the morpho-physiological traits of tobacco, under As stress.

Results: The results revealed a significant decrease in morphological traits and photosynthetic efficiency, chlorophyll content, and total soluble protein content with increasing As concentration. The results also showed that proline content, total soluble carbohydrates, hydrogen peroxide, and malondialdehyde, as well as the activity of two antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased with increasing As concentration. At 10 mg As Kg-1 soil, the expression of Δ1-pyrroline-carboxylate synthetase (P5CS) and P5C reductase (P5CR) genes was not different from the control, but their expression increased significantly at 20 and 40 mg As Kg-1 soil. At 10 mg As Kg-1 soil, the expression of proline dehydrogenase (PDH) and P5C dehydrogenase (P5CDH) genes decreased sharply compared to the control but remained unchanged at 20 and 40 mg As Kg-1 soil. At 10 and 20 mg As Kg-1 soil, expression of the ornithine δ-aminotransferase (OAT) gene was unchanged compared to the control, but at 40 mg As Kg-1 soil, it increased sharply.

Conclusion: The results showed that the accumulation of proline at the lowest (10 mg As Kg-1 soil) tested As concentration was due to a decrease in the expression of proline catabolic genes (PDH and P5CDH), while the genes involved in proline synthesis did not play a role. At 20 mg As Kg-1 soil, proline accumulation was caused by the increased expression of genes (P5CS and P5CR) involved in the glutamate pathway of proline synthesis. Additionally, at the highest concentration of arsenic (40 mg As Kg-1 soil), the OAT gene, which is active in the ornithine pathway, was also involved in proline synthesis, along with the P5CS and P5CR genes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信