Prediction of circRNA-Disease Associations via Graph Isomorphism Transformer and Dual-Stream Neural Predictor.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-02-06 DOI:10.3390/biom15020234
Hongchan Li, Yuchao Qian, Zhongchuan Sun, Haodong Zhu
{"title":"Prediction of circRNA-Disease Associations via Graph Isomorphism Transformer and Dual-Stream Neural Predictor.","authors":"Hongchan Li, Yuchao Qian, Zhongchuan Sun, Haodong Zhu","doi":"10.3390/biom15020234","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) have attracted increasing attention for their roles in human diseases, making the prediction of circRNA-disease associations (CDAs) a critical research area for advancing disease diagnosis and treatment. However, traditional experimental methods for exploring CDAs are time-consuming and resource-intensive, while existing computational models often struggle with the sparsity of CDA data and fail to uncover potential associations effectively. To address these challenges, we propose a novel CDA prediction method named the Graph Isomorphism Transformer with Dual-Stream Neural Predictor (GIT-DSP), which leverages knowledge graph technology to address data sparsity and predict CDAs more effectively. Specifically, the model incorporates multiple associations between circRNAs, diseases, and other non-coding RNAs (e.g., lncRNAs, and miRNAs) to construct a multi-source heterogeneous knowledge graph, thereby expanding the scope of CDA exploration. Subsequently, a Graph Isomorphism Transformer model is proposed to fully exploit both local and global association information within the knowledge graph, enabling deeper insights into potential CDAs. Furthermore, a Dual-Stream Neural Predictor is introduced to accurately predict complex circRNA-disease associations in the knowledge graph by integrating dual-stream predictive features. Experimental results demonstrate that GIT-DSP outperforms existing state-of-the-art models, offering valuable insights for precision medicine and disease-related research.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15020234","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Circular RNAs (circRNAs) have attracted increasing attention for their roles in human diseases, making the prediction of circRNA-disease associations (CDAs) a critical research area for advancing disease diagnosis and treatment. However, traditional experimental methods for exploring CDAs are time-consuming and resource-intensive, while existing computational models often struggle with the sparsity of CDA data and fail to uncover potential associations effectively. To address these challenges, we propose a novel CDA prediction method named the Graph Isomorphism Transformer with Dual-Stream Neural Predictor (GIT-DSP), which leverages knowledge graph technology to address data sparsity and predict CDAs more effectively. Specifically, the model incorporates multiple associations between circRNAs, diseases, and other non-coding RNAs (e.g., lncRNAs, and miRNAs) to construct a multi-source heterogeneous knowledge graph, thereby expanding the scope of CDA exploration. Subsequently, a Graph Isomorphism Transformer model is proposed to fully exploit both local and global association information within the knowledge graph, enabling deeper insights into potential CDAs. Furthermore, a Dual-Stream Neural Predictor is introduced to accurately predict complex circRNA-disease associations in the knowledge graph by integrating dual-stream predictive features. Experimental results demonstrate that GIT-DSP outperforms existing state-of-the-art models, offering valuable insights for precision medicine and disease-related research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信