Computational Elucidation of a Monobody Targeting the Phosphatase Domain of SHP2.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-02-02 DOI:10.3390/biom15020217
Yang Wang, Xin Qiao, Ruidi Zhu, Linxuan Zhou, Quan Zhang, Shaoyong Lu, Zongtao Chai
{"title":"Computational Elucidation of a Monobody Targeting the Phosphatase Domain of SHP2.","authors":"Yang Wang, Xin Qiao, Ruidi Zhu, Linxuan Zhou, Quan Zhang, Shaoyong Lu, Zongtao Chai","doi":"10.3390/biom15020217","DOIUrl":null,"url":null,"abstract":"<p><p>Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) is a key regulator in cellular signaling pathways because its dysregulation has been implicated in various pathological conditions, including cancers and developmental disorders. Despite its importance, the molecular basis of SHP2's regulatory mechanism remains poorly understood, hindering the development of effective targeted therapies. In this study, we utilized the high-specificity monobody Mb11 to investigate its interaction with the SHP2 phosphatase domain (PTP) using multiple replica molecular dynamics simulations. Our analyses elucidate the precise mechanisms through which Mb11 achieves selective recognition and stabilization of the SHP2-PTP domain, identifying key residues and interaction networks essential for its high binding specificity and regulatory dynamics. Furthermore, the study highlights the pivotal role of residue C459 in preserving the structural integrity and functional coherence of the complex, acting as a central node within the interaction network and underpinning its stability and efficiency. These findings have significantly advanced the understanding of the mechanisms underlying SHP2's involvement in disease-related signaling and pathology while simultaneously paving the way for the rational design of targeted inhibitors, offering significant implications for therapeutic strategies in SHP2-associated diseases and contributing to the broader scope of precision medicine.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15020217","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) is a key regulator in cellular signaling pathways because its dysregulation has been implicated in various pathological conditions, including cancers and developmental disorders. Despite its importance, the molecular basis of SHP2's regulatory mechanism remains poorly understood, hindering the development of effective targeted therapies. In this study, we utilized the high-specificity monobody Mb11 to investigate its interaction with the SHP2 phosphatase domain (PTP) using multiple replica molecular dynamics simulations. Our analyses elucidate the precise mechanisms through which Mb11 achieves selective recognition and stabilization of the SHP2-PTP domain, identifying key residues and interaction networks essential for its high binding specificity and regulatory dynamics. Furthermore, the study highlights the pivotal role of residue C459 in preserving the structural integrity and functional coherence of the complex, acting as a central node within the interaction network and underpinning its stability and efficiency. These findings have significantly advanced the understanding of the mechanisms underlying SHP2's involvement in disease-related signaling and pathology while simultaneously paving the way for the rational design of targeted inhibitors, offering significant implications for therapeutic strategies in SHP2-associated diseases and contributing to the broader scope of precision medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信