Improvement of Skin Condition Through RXR Alpha-Activating Materials.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-02-17 DOI:10.3390/biom15020296
Sanghyun Ye, Seonju Lee, Seongsu Kang, Seung-Hyun Jun, Nae-Gyu Kang
{"title":"Improvement of Skin Condition Through RXR Alpha-Activating Materials.","authors":"Sanghyun Ye, Seonju Lee, Seongsu Kang, Seung-Hyun Jun, Nae-Gyu Kang","doi":"10.3390/biom15020296","DOIUrl":null,"url":null,"abstract":"<p><p>Retinol is well-known anti-aging material in the cosmetics industry, owing to its proven superior efficacy both in vitro and in vivo. Despite its high efficacy, retinol is associated with limitations, such as skin irritation and its potential photodegradation. Retinol is converted into retinoid acid within cells, which then exerts a cellular response by activating both the retinoic acid receptor (RAR) and retinoid x receptor (RXR). Noting that RAR activity is associated with skin irritation and RXR activation alone can enhance skin-related indicators without inducing inflammation, we developed an alternative approach for skin anti-aging focusing solely on RXR activation. We found that combined treatment of andrographolide and <i>Bidens pilosa</i> extract successfully activated RXR alpha and enhanced <i>RXRA</i> gene expression. Moreover, we investigated their efficacy using dermal fibroblasts and keratinocytes and found that they enhanced the gene expression of extracellular matrix (ECM) proteins with anti-oxidant and anti-inflammation efficacies. Finally, in a human clinical trial, we confirmed that our materials successfully improved wrinkles in various areas, skin elasticity and hydration without causing irritating side effects. These findings highlight the potential of our RXR alpha-activating materials as an anti-wrinkle solution that avoids the typical side effects associated with retinol.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15020296","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Retinol is well-known anti-aging material in the cosmetics industry, owing to its proven superior efficacy both in vitro and in vivo. Despite its high efficacy, retinol is associated with limitations, such as skin irritation and its potential photodegradation. Retinol is converted into retinoid acid within cells, which then exerts a cellular response by activating both the retinoic acid receptor (RAR) and retinoid x receptor (RXR). Noting that RAR activity is associated with skin irritation and RXR activation alone can enhance skin-related indicators without inducing inflammation, we developed an alternative approach for skin anti-aging focusing solely on RXR activation. We found that combined treatment of andrographolide and Bidens pilosa extract successfully activated RXR alpha and enhanced RXRA gene expression. Moreover, we investigated their efficacy using dermal fibroblasts and keratinocytes and found that they enhanced the gene expression of extracellular matrix (ECM) proteins with anti-oxidant and anti-inflammation efficacies. Finally, in a human clinical trial, we confirmed that our materials successfully improved wrinkles in various areas, skin elasticity and hydration without causing irritating side effects. These findings highlight the potential of our RXR alpha-activating materials as an anti-wrinkle solution that avoids the typical side effects associated with retinol.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信