New Insights on the miRNA Role in Diabetic Tendinopathy: Adipose-Derived Mesenchymal Stem Cell Conditioned Medium as a Potential Innovative Epigenetic-Based Therapy for Tendon Healing.
{"title":"New Insights on the miRNA Role in Diabetic Tendinopathy: Adipose-Derived Mesenchymal Stem Cell Conditioned Medium as a Potential Innovative Epigenetic-Based Therapy for Tendon Healing.","authors":"Marina Russo, Caterina Claudia Lepre, Gianluca Conza, Nicoletta Tangredi, Giovanbattista D'Amico, Adriano Braile, Antimo Moretti, Umberto Tarantino, Francesca Gimigliano, Michele D'Amico, Maria Consiglia Trotta, Giuseppe Toro","doi":"10.3390/biom15020264","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adipose-derived mesenchymal stem cell conditioned medium (ASC-CM) improved the viability and wound closure of human tenocytes (HTCN) exposed to high glucose (HG) by activating the transforming growth factor beta 1 (TGF-β1) pathway.</p><p><strong>Objectives: </strong>Since ASC-CM can also modulate microRNAs (miRNAs) in recipient cells, this study investigated the effects of ASC-CM on the miRNAs regulating tendon repair (miR-29a-3p, miR-210-3p and miR-21-5p) in HG-HTNC.</p><p><strong>Methods: </strong>ASC-CM was obtained by ASCs isolated from the abdominal fat tissue of seven non-diabetic patients. HTNC were cultured in HG for 20 days, then scratched and exposed for 24 h to ASC-CM. qRT-PCR and ELISAs assessed miRNA and target levels.</p><p><strong>Results: </strong>HG-HTNC exhibited a significant downregulation of miRNAs. ASC-CM restored the levels of miRNAs and their related targets involved in tendon repair.</p><p><strong>Conclusions: </strong>The epigenetic modulation observed in HG-HTNC exposed to ASC-CM could be an innovative option in the management of diabetic tendinopathy.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15020264","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Adipose-derived mesenchymal stem cell conditioned medium (ASC-CM) improved the viability and wound closure of human tenocytes (HTCN) exposed to high glucose (HG) by activating the transforming growth factor beta 1 (TGF-β1) pathway.
Objectives: Since ASC-CM can also modulate microRNAs (miRNAs) in recipient cells, this study investigated the effects of ASC-CM on the miRNAs regulating tendon repair (miR-29a-3p, miR-210-3p and miR-21-5p) in HG-HTNC.
Methods: ASC-CM was obtained by ASCs isolated from the abdominal fat tissue of seven non-diabetic patients. HTNC were cultured in HG for 20 days, then scratched and exposed for 24 h to ASC-CM. qRT-PCR and ELISAs assessed miRNA and target levels.
Results: HG-HTNC exhibited a significant downregulation of miRNAs. ASC-CM restored the levels of miRNAs and their related targets involved in tendon repair.
Conclusions: The epigenetic modulation observed in HG-HTNC exposed to ASC-CM could be an innovative option in the management of diabetic tendinopathy.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.