G-Protein-Coupled Receptor (GPCR) Signaling and Pharmacology in Metabolism: Physiology, Mechanisms, and Therapeutic Potential.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-02-15 DOI:10.3390/biom15020291
Yun Yeong Cho, Soyeon Kim, Pankyung Kim, Min Jeong Jo, Song-E Park, Yiju Choi, Su Myung Jung, Hye Jin Kang
{"title":"G-Protein-Coupled Receptor (GPCR) Signaling and Pharmacology in Metabolism: Physiology, Mechanisms, and Therapeutic Potential.","authors":"Yun Yeong Cho, Soyeon Kim, Pankyung Kim, Min Jeong Jo, Song-E Park, Yiju Choi, Su Myung Jung, Hye Jin Kang","doi":"10.3390/biom15020291","DOIUrl":null,"url":null,"abstract":"<p><p>G-protein coupled receptors (GPCRs), the largest family of integral membrane proteins, enable cells to sense and appropriately respond to the environment through mediating extracellular signaling to intercellular messenger molecules. GPCRs' pairing with a diverse array of G protein subunits and related downstream secondary messengers, combined with their ligand versatility-from conventional peptide hormone to numerous bioactive metabolites, allow GPCRs to comprehensively regulate metabolism and physiology. Consequently, GPCRs have garnered significant attention for their therapeutic potential in metabolic diseases. This review focuses on six GPCRs, GPR40, GPR120, GLP-1R, and ß-adrenergic receptors (ADRB1, ADRB2, and ADRB3), with GLP-1R recognized as a prominent regulator of system-level metabolism, while the roles of GPR40, GPR120 and ß-adrenergic receptors in central carbon metabolism and energy homeostasis are increasingly appreciated. Here, we discuss their physiological functions in metabolism, the current pharmacological landscape, and the intricacies of their signaling pathways via G protein and ß-arrestin activation. Additionally, we discuss the limitations of existing GPCR-targeted strategies for treating metabolic diseases and offer insights into future perspectives for advancing GPCR pharmacology.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15020291","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

G-protein coupled receptors (GPCRs), the largest family of integral membrane proteins, enable cells to sense and appropriately respond to the environment through mediating extracellular signaling to intercellular messenger molecules. GPCRs' pairing with a diverse array of G protein subunits and related downstream secondary messengers, combined with their ligand versatility-from conventional peptide hormone to numerous bioactive metabolites, allow GPCRs to comprehensively regulate metabolism and physiology. Consequently, GPCRs have garnered significant attention for their therapeutic potential in metabolic diseases. This review focuses on six GPCRs, GPR40, GPR120, GLP-1R, and ß-adrenergic receptors (ADRB1, ADRB2, and ADRB3), with GLP-1R recognized as a prominent regulator of system-level metabolism, while the roles of GPR40, GPR120 and ß-adrenergic receptors in central carbon metabolism and energy homeostasis are increasingly appreciated. Here, we discuss their physiological functions in metabolism, the current pharmacological landscape, and the intricacies of their signaling pathways via G protein and ß-arrestin activation. Additionally, we discuss the limitations of existing GPCR-targeted strategies for treating metabolic diseases and offer insights into future perspectives for advancing GPCR pharmacology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信