Irene M G M Hemel, Ilja C W Arts, Michelle Moerel, Mike Gerards
{"title":"The Matrix of Mitochondrial Imaging: Exploring Spatial Dimensions.","authors":"Irene M G M Hemel, Ilja C W Arts, Michelle Moerel, Mike Gerards","doi":"10.3390/biom15020229","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria play a crucial role in human biology, affecting cellular processes at the smallest spatial scale as well as those involved in the functionality of the whole system. Imaging is the most important research tool for studying the fundamental role of mitochondria across these diverse spatial scales. A wide array of available imaging techniques have enabled us to visualize mitochondrial structure and behavior, as well as their effect on cells and tissues in a range from micrometers to centimeters. Each of the various imaging techniques that are available offers unique advantages tailored to specific research needs. Selecting an appropriate technique suitable for the scale and application of interest is therefore crucial, but can be challenging due to the large range of possibilities. The aim of this review is two-fold. First, we provide an overview of the available imaging techniques and discuss their strengths and limitations for applications across the sub-mitochondrial, cellular, tissue and organ levels for the imaging of mitochondria. Second, we identify opportunities for novel applications and advancement in the field. We emphasize the importance of integration across scales in mitochondrial imaging studies, particularly to bridge the gap between microscopic and non-invasive techniques. While integrating these diverse scales is challenging, primarily because such multi-scale approaches require expertise that spans different imaging modalities, we argue that integration has the potential to provide groundbreaking insights into mitochondrial biology. By providing a comprehensive overview of imaging techniques, this review paves the way for multi-scale imaging initiatives in mitochondrial research.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853629/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15020229","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria play a crucial role in human biology, affecting cellular processes at the smallest spatial scale as well as those involved in the functionality of the whole system. Imaging is the most important research tool for studying the fundamental role of mitochondria across these diverse spatial scales. A wide array of available imaging techniques have enabled us to visualize mitochondrial structure and behavior, as well as their effect on cells and tissues in a range from micrometers to centimeters. Each of the various imaging techniques that are available offers unique advantages tailored to specific research needs. Selecting an appropriate technique suitable for the scale and application of interest is therefore crucial, but can be challenging due to the large range of possibilities. The aim of this review is two-fold. First, we provide an overview of the available imaging techniques and discuss their strengths and limitations for applications across the sub-mitochondrial, cellular, tissue and organ levels for the imaging of mitochondria. Second, we identify opportunities for novel applications and advancement in the field. We emphasize the importance of integration across scales in mitochondrial imaging studies, particularly to bridge the gap between microscopic and non-invasive techniques. While integrating these diverse scales is challenging, primarily because such multi-scale approaches require expertise that spans different imaging modalities, we argue that integration has the potential to provide groundbreaking insights into mitochondrial biology. By providing a comprehensive overview of imaging techniques, this review paves the way for multi-scale imaging initiatives in mitochondrial research.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.