Using a Neural Network Architecture for the Prediction of Neurologic Outcome for Out-of-Hospital Cardiac Arrests Using Hospital Level Variables and Novel Physiologic Markers.
Martha Razo, Pavitra Kotini, Jing Li, Shaveta Khosla, Irina A Buhimschi, Terry Vanden Hoek, Marina Del Rios, Houshang Darabi
{"title":"Using a Neural Network Architecture for the Prediction of Neurologic Outcome for Out-of-Hospital Cardiac Arrests Using Hospital Level Variables and Novel Physiologic Markers.","authors":"Martha Razo, Pavitra Kotini, Jing Li, Shaveta Khosla, Irina A Buhimschi, Terry Vanden Hoek, Marina Del Rios, Houshang Darabi","doi":"10.3390/bioengineering12020124","DOIUrl":null,"url":null,"abstract":"<p><p>Out-of-hospital cardiac arrest (OHCA) is a major public health burden due to its high mortality rate, sudden nature, and long-term impact on survivors. Consequently, there is a crucial need to create prediction models to better understand patient trajectories and assist clinicians and families in making informed decisions. We studied 107 adult OHCA patients admitted at an academic Emergency Department (ED) from 2018-2023. Blood samples and ocular ultrasounds were acquired at 1, 6, and 24 h after return of spontaneous circulation (ROSC). Six classes of clinical and novel variables were used: (1) Vital signs after ROSC, (2) pre-hospital and ED data, (3) hospital admission data, (4) ocular ultrasound parameters, (5) plasma protein biomarkers and (6) sex steroid hormones. A base model was built using 1 h variables in classes 1-3, reasoning these are available in most EDs. Extending from the base model, we evaluated 26 distinct neural network models for prediction of neurological outcome by the cerebral performance category (CPC) score. The top-performing model consisted of all variables at 1 h resulting in an AUROC score of 0.946. We determined a parsimonious set of variables that optimally predicts CPC score. Our research emphasizes the added value of incorporating ocular ultrasound, plasma biomarkers, sex hormones in the development of more robust predictive models for neurological outcome after OHCA.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020124","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Out-of-hospital cardiac arrest (OHCA) is a major public health burden due to its high mortality rate, sudden nature, and long-term impact on survivors. Consequently, there is a crucial need to create prediction models to better understand patient trajectories and assist clinicians and families in making informed decisions. We studied 107 adult OHCA patients admitted at an academic Emergency Department (ED) from 2018-2023. Blood samples and ocular ultrasounds were acquired at 1, 6, and 24 h after return of spontaneous circulation (ROSC). Six classes of clinical and novel variables were used: (1) Vital signs after ROSC, (2) pre-hospital and ED data, (3) hospital admission data, (4) ocular ultrasound parameters, (5) plasma protein biomarkers and (6) sex steroid hormones. A base model was built using 1 h variables in classes 1-3, reasoning these are available in most EDs. Extending from the base model, we evaluated 26 distinct neural network models for prediction of neurological outcome by the cerebral performance category (CPC) score. The top-performing model consisted of all variables at 1 h resulting in an AUROC score of 0.946. We determined a parsimonious set of variables that optimally predicts CPC score. Our research emphasizes the added value of incorporating ocular ultrasound, plasma biomarkers, sex hormones in the development of more robust predictive models for neurological outcome after OHCA.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering