Energy Saving in Permanent Cardiac Pacing: Pulse Waveform and Charge Balancing Deserve Consideration.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Franco Di Gregorio, Lina Marcantoni, Aldo Mozzi, Alberto Barbetta, Francesco Zanon
{"title":"Energy Saving in Permanent Cardiac Pacing: Pulse Waveform and Charge Balancing Deserve Consideration.","authors":"Franco Di Gregorio, Lina Marcantoni, Aldo Mozzi, Alberto Barbetta, Francesco Zanon","doi":"10.3390/bioengineering12020194","DOIUrl":null,"url":null,"abstract":"<p><p>The pacing pulse produced by implantable stimulators can be described as a truncated exponential decay from the starting peak amplitude, corresponding to the discharge of the output stage capacitance (reservoir and isolation capacitors, in series) along the application time. Pulse decay and charge balancing have relevant implications on the ideal setting of a pacing device, as demonstrated by mathematical predictions based on well-acknowledged theoretical statements. Successful stimulation is achieved with minimum energy expense at a pulse duration shorter than the chronaxie time, which represents the upper border of the advisable duration interval. With any start amplitude, the stimulation safety margin can be improved by a duration increase beyond the chronaxie only up to an absolute limit (longest useful duration), which depends on the chronaxie and the pulse time-constant. At the longest useful duration, the threshold start amplitude is at the minimum and cannot decrease any further, though it and the corresponding pulse mean amplitude largely exceed the rheobase. The overall pacing performance is affected, in addition, by the load resistance and the electrode capacitance. Pulse amplitude decay limits the effectiveness of extended duration in implantable stimulators, making short pulses preferable whenever possible. Proper pulse settings based on actual waveform properties can prevent energy waste and reduce pacing consumption, thus prolonging the service life of the stimulator.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851791/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020194","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pacing pulse produced by implantable stimulators can be described as a truncated exponential decay from the starting peak amplitude, corresponding to the discharge of the output stage capacitance (reservoir and isolation capacitors, in series) along the application time. Pulse decay and charge balancing have relevant implications on the ideal setting of a pacing device, as demonstrated by mathematical predictions based on well-acknowledged theoretical statements. Successful stimulation is achieved with minimum energy expense at a pulse duration shorter than the chronaxie time, which represents the upper border of the advisable duration interval. With any start amplitude, the stimulation safety margin can be improved by a duration increase beyond the chronaxie only up to an absolute limit (longest useful duration), which depends on the chronaxie and the pulse time-constant. At the longest useful duration, the threshold start amplitude is at the minimum and cannot decrease any further, though it and the corresponding pulse mean amplitude largely exceed the rheobase. The overall pacing performance is affected, in addition, by the load resistance and the electrode capacitance. Pulse amplitude decay limits the effectiveness of extended duration in implantable stimulators, making short pulses preferable whenever possible. Proper pulse settings based on actual waveform properties can prevent energy waste and reduce pacing consumption, thus prolonging the service life of the stimulator.

植入式刺激器产生的起搏脉冲可描述为从起始峰值振幅开始的截断指数衰减,与输出级电容(串联的储能器和隔离电容器)在应用时间内的放电相对应。脉冲衰减和电荷平衡对起搏装置的理想设置具有重要影响,这一点已通过基于公认理论的数学预测得到证实。在脉冲持续时间短于时滞时间(即最佳持续时间间隔的上限)的情况下,以最小的能量消耗实现成功的刺激。在任何起始振幅下,刺激的安全系数都可以通过持续时间的增加来提高,但持续时间的增加只能达到一个绝对极限(最长有效持续时间),这取决于时序和脉冲时间常数。在最长有效持续时间内,阈值起始振幅处于最小值,不能再降低,尽管它和相应的脉冲平均振幅在很大程度上超过了流变基。此外,整体起搏性能还受到负载电阻和电极电容的影响。脉冲振幅衰减限制了植入式刺激器延长持续时间的效果,因此尽可能选择短脉冲。根据实际波形特性进行适当的脉冲设置可以防止能量浪费,减少起搏消耗,从而延长刺激器的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信