{"title":"Relevance of Leg Rehabilitation to Modulating Neurogenic Lower Urinary Tract Symptoms: A Systematic Review.","authors":"Gianluca Ciardi, Donatella Giraudo, Milena Fontana, Chiara Citterio, Paola Gandolfi, Gianfranco Lamberti","doi":"10.3390/bioengineering12020127","DOIUrl":null,"url":null,"abstract":"<p><p>Neurogenic lower urinary tract dysfunction (NLUTD) is a secondary complication of a wide range of neurological disorders, which affects patients' everyday life and self-efficacy. Some brain imaging studies have shown an overlap between motor activation of the pelvic floor and lower limbs. This systematic review sought to examine the possibility of improving overactive bladder outcomes through a conservative approach based on lower limb training. We conducted a systematic literature review, following the PRISMA guidelines. The following databases were searched: PEDro, PubMed, TRIP, Cochrane Library, EDS base index, Google Scholar, and CINAHL. The PEDro Scale and Cochrane Risk of Bias Assessment Tool were used to assess the overall study quality and sources of bias. A total of 5567 records were retrieved through the systematic search, of which 104 were sought for retrieval; two cohort studies and one randomized controlled trial were finally included. Urodynamics and specific bladder functionality questionnaires showed preliminary evidence of improvement following lower limb stimulation, implemented according to different treatment types (exoskeleton training and weight-suspension walking training). Lower limb-focused exercises showed promising results for improving bladder function, despite the small number of studies and small sample sizes. Future research should confirm this hypothesis using larger samples.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020127","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Neurogenic lower urinary tract dysfunction (NLUTD) is a secondary complication of a wide range of neurological disorders, which affects patients' everyday life and self-efficacy. Some brain imaging studies have shown an overlap between motor activation of the pelvic floor and lower limbs. This systematic review sought to examine the possibility of improving overactive bladder outcomes through a conservative approach based on lower limb training. We conducted a systematic literature review, following the PRISMA guidelines. The following databases were searched: PEDro, PubMed, TRIP, Cochrane Library, EDS base index, Google Scholar, and CINAHL. The PEDro Scale and Cochrane Risk of Bias Assessment Tool were used to assess the overall study quality and sources of bias. A total of 5567 records were retrieved through the systematic search, of which 104 were sought for retrieval; two cohort studies and one randomized controlled trial were finally included. Urodynamics and specific bladder functionality questionnaires showed preliminary evidence of improvement following lower limb stimulation, implemented according to different treatment types (exoskeleton training and weight-suspension walking training). Lower limb-focused exercises showed promising results for improving bladder function, despite the small number of studies and small sample sizes. Future research should confirm this hypothesis using larger samples.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering