{"title":"Predicting Health-Related Quality of Life Using Social Determinants of Health: A Machine Learning Approach with the All of Us Cohort.","authors":"Tadesse M Abegaz, Muktar Ahmed, Askal Ayalew Ali, Akshaya Srikanth Bhagavathula","doi":"10.3390/bioengineering12020166","DOIUrl":null,"url":null,"abstract":"<p><p>This study applied machine learning (ML) algorithms to predict health-related quality of life (HRQOL) using comprehensive social determinants of health (SDOH) features. Data from the All of Us dataset, comprising participants with complete HRQOL and SDOH records, were analyzed. The primary outcome was HRQOL, which encompassed physical and mental health components, while SDOH features included social, educational, economic, environmental, and healthcare access factors. Three ML algorithms, namely logistic regression, XGBoost, and Random Forest, were tested. The models achieved accuracy ranges of 0.73-0.77 for HRQOL, 0.70-0.71 for physical health, and 0.72-0.77 for mental health, with corresponding area under the curve ranges of 0.81-0.84, 0.74-0.76, and 0.83-0.85, respectively. Emotional stability, activity management, spiritual beliefs, and comorbidity were identified as key predictors. These findings underscore the critical role of SDOH in predicting HRQOL and suggests future research to focus on applying such models to diverse patient populations and specific clinical conditions.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study applied machine learning (ML) algorithms to predict health-related quality of life (HRQOL) using comprehensive social determinants of health (SDOH) features. Data from the All of Us dataset, comprising participants with complete HRQOL and SDOH records, were analyzed. The primary outcome was HRQOL, which encompassed physical and mental health components, while SDOH features included social, educational, economic, environmental, and healthcare access factors. Three ML algorithms, namely logistic regression, XGBoost, and Random Forest, were tested. The models achieved accuracy ranges of 0.73-0.77 for HRQOL, 0.70-0.71 for physical health, and 0.72-0.77 for mental health, with corresponding area under the curve ranges of 0.81-0.84, 0.74-0.76, and 0.83-0.85, respectively. Emotional stability, activity management, spiritual beliefs, and comorbidity were identified as key predictors. These findings underscore the critical role of SDOH in predicting HRQOL and suggests future research to focus on applying such models to diverse patient populations and specific clinical conditions.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering