{"title":"IDCC-SAM: A Zero-Shot Approach for Cell Counting in Immunocytochemistry Dataset Using the Segment Anything Model.","authors":"Samuel Fanijo, Ali Jannesari, Julie Dickerson","doi":"10.3390/bioengineering12020184","DOIUrl":null,"url":null,"abstract":"<p><p>Cell counting in immunocytochemistry is vital for biomedical research, supporting the diagnosis and treatment of diseases such as neurological disorders, autoimmune conditions, and cancer. However, traditional counting methods are manual, time-consuming, and error-prone, while deep learning solutions require costly labeled datasets, limiting scalability. We introduce the Immunocytochemistry Dataset Cell Counting with Segment Anything Model (IDCC-SAM), a novel application of the Segment Anything Model (SAM), designed to adapt the model for zero-shot-based cell counting in fluorescent microscopic immunocytochemistry datasets. IDCC-SAM leverages Meta AI's SAM, pre-trained on 11 million images, to eliminate the need for annotations, enhancing scalability and efficiency. Evaluated on three public datasets (IDCIA, ADC, and VGG), IDCC-SAM achieved the lowest Mean Absolute Error (26, 28, 52) on VGG and ADC and the highest Acceptable Absolute Error (28%, 26%, 33%) across all datasets, outperforming state-of-the-art supervised models like U-Net and Mask R-CNN, as well as zero-shot benchmarks like NP-SAM and SAM4Organoid. These results demonstrate IDCC-SAM's potential to improve cell-counting accuracy while reducing reliance on specialized models and manual annotations.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020184","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cell counting in immunocytochemistry is vital for biomedical research, supporting the diagnosis and treatment of diseases such as neurological disorders, autoimmune conditions, and cancer. However, traditional counting methods are manual, time-consuming, and error-prone, while deep learning solutions require costly labeled datasets, limiting scalability. We introduce the Immunocytochemistry Dataset Cell Counting with Segment Anything Model (IDCC-SAM), a novel application of the Segment Anything Model (SAM), designed to adapt the model for zero-shot-based cell counting in fluorescent microscopic immunocytochemistry datasets. IDCC-SAM leverages Meta AI's SAM, pre-trained on 11 million images, to eliminate the need for annotations, enhancing scalability and efficiency. Evaluated on three public datasets (IDCIA, ADC, and VGG), IDCC-SAM achieved the lowest Mean Absolute Error (26, 28, 52) on VGG and ADC and the highest Acceptable Absolute Error (28%, 26%, 33%) across all datasets, outperforming state-of-the-art supervised models like U-Net and Mask R-CNN, as well as zero-shot benchmarks like NP-SAM and SAM4Organoid. These results demonstrate IDCC-SAM's potential to improve cell-counting accuracy while reducing reliance on specialized models and manual annotations.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering