Development of Mathematical Model for Understanding Microcirculation in Diabetic Foot Ulcers Based on Ankle-Brachial Index.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Ana Karoline Almeida da Silva, Gustavo Adolfo Marcelino de Almeida Nunes, Rafael Mendes Faria, Mário Fabrício Fleury Rosa, Lindemberg Barreto Mota da Costa, Newton de Faria, Adson Ferreira da Rocha, José Carlos Tatmatsu-Rocha, Suelia de Siqueira Rodrigues Fleury Rosa
{"title":"Development of Mathematical Model for Understanding Microcirculation in Diabetic Foot Ulcers Based on Ankle-Brachial Index.","authors":"Ana Karoline Almeida da Silva, Gustavo Adolfo Marcelino de Almeida Nunes, Rafael Mendes Faria, Mário Fabrício Fleury Rosa, Lindemberg Barreto Mota da Costa, Newton de Faria, Adson Ferreira da Rocha, José Carlos Tatmatsu-Rocha, Suelia de Siqueira Rodrigues Fleury Rosa","doi":"10.3390/bioengineering12020206","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes an innovative mathematical model for assessing microcirculation in patients with diabetic ulcers, using the ankle-brachial index (ABI). The methodology combines Bond Graph (BG) modeling and Particle Swarm Optimization (PSO), enabling a detailed analysis of hemodynamic patterns in a pilot sample of three patients. The results revealed a correlation between ulcer size and reduced ABI values, suggesting that deficits in microcirculation directly impact the severity of lesions. Furthermore, despite variations in ABI values and arterial pressures, all patients exhibited high capillary resistance, indicating difficulties in microcirculatory blood flow. The PSO-optimized parameters for the capillary equivalent circuit were found to be R1=89.784Ω, R2=426.55Ω, L=27.506H, and C=0.00040675F, which confirms the presence of high vascular resistance and reduced compliance in the microvascular system of patients with diabetic foot ulcers. This quantitative analysis, made possible through mathematical modeling, is crucial for detecting subtle changes in microcirculatory dynamics, which may not be easily identified through conventional pressure measurements alone. The increased capillary resistance observed may serve as a key indicator of vascular impairment, potentially guiding early intervention strategies and optimizing diabetic ulcer treatment. We acknowledge that the sample size of three patients represents a limitation of the study, but this number was intentionally chosen to allow for a detailed and controlled analysis of the variables involved. Although the findings are promising, additional experimental validations are necessary to confirm the clinical applicability of the model in a larger patient sample, thus solidifying its relevance in clinical practice.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020206","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes an innovative mathematical model for assessing microcirculation in patients with diabetic ulcers, using the ankle-brachial index (ABI). The methodology combines Bond Graph (BG) modeling and Particle Swarm Optimization (PSO), enabling a detailed analysis of hemodynamic patterns in a pilot sample of three patients. The results revealed a correlation between ulcer size and reduced ABI values, suggesting that deficits in microcirculation directly impact the severity of lesions. Furthermore, despite variations in ABI values and arterial pressures, all patients exhibited high capillary resistance, indicating difficulties in microcirculatory blood flow. The PSO-optimized parameters for the capillary equivalent circuit were found to be R1=89.784Ω, R2=426.55Ω, L=27.506H, and C=0.00040675F, which confirms the presence of high vascular resistance and reduced compliance in the microvascular system of patients with diabetic foot ulcers. This quantitative analysis, made possible through mathematical modeling, is crucial for detecting subtle changes in microcirculatory dynamics, which may not be easily identified through conventional pressure measurements alone. The increased capillary resistance observed may serve as a key indicator of vascular impairment, potentially guiding early intervention strategies and optimizing diabetic ulcer treatment. We acknowledge that the sample size of three patients represents a limitation of the study, but this number was intentionally chosen to allow for a detailed and controlled analysis of the variables involved. Although the findings are promising, additional experimental validations are necessary to confirm the clinical applicability of the model in a larger patient sample, thus solidifying its relevance in clinical practice.

基于踝肱指数的糖尿病足溃疡微循环数学模型的开发
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信