{"title":"A Study on Staging Cystic Echinococcosis Using Machine Learning Methods.","authors":"Tuvshinsaikhan Tegshee, Temuulen Dorjsuren, Sungju Lee, Dolgorsuren Batjargal","doi":"10.3390/bioengineering12020181","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic echinococcosis (CE) is a chronic parasitic disease characterized by slow progression and non-specific clinical symptoms, often leading to delayed diagnosis and treatment. Early and precise diagnosis is crucial for effective treatment, particularly considering the five stages of CE as outlined by the World Health Organization (WHO). This study explores the development of an advanced system that leverages artificial intelligence (AI) and machine learning (ML) techniques to classify CE cysts into stages using various imaging modalities, including computed tomography (CT), ultrasound (US), and magnetic resonance imaging (MRI). A total of ten ML algorithms were evaluated across these datasets, using performance metrics such as accuracy, precision, recall (sensitivity), specificity, and F1 score. These metrics offer diverse criteria for assessing model performance. To address this, we propose a normalization and scoring technique that consolidates all metrics into a final score, allowing for the identification of the best model that meets the desired criteria for CE cyst classification. The experimental results demonstrate that hybrid models, such as CNN+ResNet and Inception+ResNet, consistently outperformed other models across all three datasets. Specifically, CNN+ResNet, selected as the best model, achieved 97.55% accuracy on CT images, 93.99% accuracy on US images, and 100% accuracy on MRI images. This research underscores the potential of hybrid and pre-trained models in advancing medical image classification, providing a promising approach to improving the differential diagnosis of CE disease.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020181","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cystic echinococcosis (CE) is a chronic parasitic disease characterized by slow progression and non-specific clinical symptoms, often leading to delayed diagnosis and treatment. Early and precise diagnosis is crucial for effective treatment, particularly considering the five stages of CE as outlined by the World Health Organization (WHO). This study explores the development of an advanced system that leverages artificial intelligence (AI) and machine learning (ML) techniques to classify CE cysts into stages using various imaging modalities, including computed tomography (CT), ultrasound (US), and magnetic resonance imaging (MRI). A total of ten ML algorithms were evaluated across these datasets, using performance metrics such as accuracy, precision, recall (sensitivity), specificity, and F1 score. These metrics offer diverse criteria for assessing model performance. To address this, we propose a normalization and scoring technique that consolidates all metrics into a final score, allowing for the identification of the best model that meets the desired criteria for CE cyst classification. The experimental results demonstrate that hybrid models, such as CNN+ResNet and Inception+ResNet, consistently outperformed other models across all three datasets. Specifically, CNN+ResNet, selected as the best model, achieved 97.55% accuracy on CT images, 93.99% accuracy on US images, and 100% accuracy on MRI images. This research underscores the potential of hybrid and pre-trained models in advancing medical image classification, providing a promising approach to improving the differential diagnosis of CE disease.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering