Xinyu Ma, Haotian Sun, Gang Yuan, Yufei Tang, Jie Liu, Shuangqing Chen, Jian Zheng
{"title":"Cross-Attention Adaptive Feature Pyramid Network with Uncertainty Boundary Modeling for Mass Detection in Digital Breast Tomosynthesis.","authors":"Xinyu Ma, Haotian Sun, Gang Yuan, Yufei Tang, Jie Liu, Shuangqing Chen, Jian Zheng","doi":"10.3390/bioengineering12020196","DOIUrl":null,"url":null,"abstract":"<p><p>Computer-aided detection (CADe) of masses in digital breast tomosynthesis (DBT) is crucial for early breast cancer diagnosis. However, the variability in the size and morphology of breast masses and their resemblance to surrounding tissues present significant challenges. Current CNN-based CADe methods, particularly those that use Feature Pyramid Networks (FPN), often fail to integrate multi-scale information effectively and struggle to handle dense glandular tissue with high-density or iso-density mass lesions due to the unidirectional integration and progressive attenuation of features, leading to high false positive rates. Additionally, the commonly indistinct boundaries of breast masses introduce uncertainty in boundary localization, which makes traditional Dirac boundary modeling insufficient for precise boundary regression. To address these issues, we propose the CU-Net network, which efficiently fuses multi-scale features and accurately models blurred boundaries. Specifically, the CU-Net introduces the Cross-Attention Adaptive Feature Pyramid Network (CA-FPN), which enhances the effectiveness and accuracy of feature interactions through a cross-attention mechanism to capture global correlations across multi-scale feature maps. Simultaneously, the Breast Density Perceptual Module (BDPM) incorporates breast density information to weight intermediate features, thereby improving the network's focus on dense breast regions susceptible to false positives. For blurred mass boundaries, we introduce Uncertainty Boundary Modeling (UBM) to model the positional distribution function of predicted bounding boxes for masses with uncertain boundaries. In comparative experiments on an in-house clinical DBT dataset and the BCS-DBT dataset, the proposed method achieved sensitivities of 89.68% and 72.73% at 2 false positives per DBT volume (FPs/DBT), respectively, significantly outperforming existing state-of-the-art detection methods. This method offers clinicians rapid, accurate, and objective diagnostic assistance, demonstrating substantial potential for clinical application.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020196","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Computer-aided detection (CADe) of masses in digital breast tomosynthesis (DBT) is crucial for early breast cancer diagnosis. However, the variability in the size and morphology of breast masses and their resemblance to surrounding tissues present significant challenges. Current CNN-based CADe methods, particularly those that use Feature Pyramid Networks (FPN), often fail to integrate multi-scale information effectively and struggle to handle dense glandular tissue with high-density or iso-density mass lesions due to the unidirectional integration and progressive attenuation of features, leading to high false positive rates. Additionally, the commonly indistinct boundaries of breast masses introduce uncertainty in boundary localization, which makes traditional Dirac boundary modeling insufficient for precise boundary regression. To address these issues, we propose the CU-Net network, which efficiently fuses multi-scale features and accurately models blurred boundaries. Specifically, the CU-Net introduces the Cross-Attention Adaptive Feature Pyramid Network (CA-FPN), which enhances the effectiveness and accuracy of feature interactions through a cross-attention mechanism to capture global correlations across multi-scale feature maps. Simultaneously, the Breast Density Perceptual Module (BDPM) incorporates breast density information to weight intermediate features, thereby improving the network's focus on dense breast regions susceptible to false positives. For blurred mass boundaries, we introduce Uncertainty Boundary Modeling (UBM) to model the positional distribution function of predicted bounding boxes for masses with uncertain boundaries. In comparative experiments on an in-house clinical DBT dataset and the BCS-DBT dataset, the proposed method achieved sensitivities of 89.68% and 72.73% at 2 false positives per DBT volume (FPs/DBT), respectively, significantly outperforming existing state-of-the-art detection methods. This method offers clinicians rapid, accurate, and objective diagnostic assistance, demonstrating substantial potential for clinical application.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering