Younggun Lee, Yongkyun Lee, Sungho Kim, Sitae Kim, Seunghoon Yoo
{"title":"Contactless Fatigue Level Diagnosis System Through Multimodal Sensor Data.","authors":"Younggun Lee, Yongkyun Lee, Sungho Kim, Sitae Kim, Seunghoon Yoo","doi":"10.3390/bioengineering12020116","DOIUrl":null,"url":null,"abstract":"<p><p>Fatigue management is critical for high-risk professions such as pilots, firefighters, and healthcare workers, where physical and mental exhaustion can lead to catastrophic accidents and loss of life. Traditional fatigue assessment methods, including surveys and physiological measurements, are limited in real-time monitoring and user convenience. To address these issues, this study introduces a novel contactless fatigue level diagnosis system leveraging multimodal sensor data, including video, thermal imaging, and audio. The system integrates non-contact biometric data collection with an AI-driven classification model capable of diagnosing fatigue levels on a 1 to 5 scale with an average accuracy of 89%. Key features include real-time feedback, adaptive retraining for personalized accuracy improvement, and compatibility with high-stress environments. Experimental results demonstrate that retraining with user feedback enhances classification accuracy by 11 percentage points. The system's hardware is validated for robustness under diverse operational conditions, including temperature and electromagnetic compliance. This innovation provides a practical solution for improving operational safety and performance in critical sectors by enabling precise, non-invasive, and efficient fatigue monitoring.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020116","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fatigue management is critical for high-risk professions such as pilots, firefighters, and healthcare workers, where physical and mental exhaustion can lead to catastrophic accidents and loss of life. Traditional fatigue assessment methods, including surveys and physiological measurements, are limited in real-time monitoring and user convenience. To address these issues, this study introduces a novel contactless fatigue level diagnosis system leveraging multimodal sensor data, including video, thermal imaging, and audio. The system integrates non-contact biometric data collection with an AI-driven classification model capable of diagnosing fatigue levels on a 1 to 5 scale with an average accuracy of 89%. Key features include real-time feedback, adaptive retraining for personalized accuracy improvement, and compatibility with high-stress environments. Experimental results demonstrate that retraining with user feedback enhances classification accuracy by 11 percentage points. The system's hardware is validated for robustness under diverse operational conditions, including temperature and electromagnetic compliance. This innovation provides a practical solution for improving operational safety and performance in critical sectors by enabling precise, non-invasive, and efficient fatigue monitoring.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering