Hepatotoxicity in Carp (Carassius auratus) Exposed to Perfluorooctane Sulfonate (PFOS): Integrative Histopathology and Transcriptomics Analysis.

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animals Pub Date : 2025-02-19 DOI:10.3390/ani15040610
Lin Tang, Guijie Hao, Dongren Zhou, Yunpeng Fan, Zihao Wei, Dongsheng Li, Yafang Shen, Haoyu Fang, Feng Lin, Meirong Zhao, Haiqi Zhang
{"title":"Hepatotoxicity in Carp (<i>Carassius auratus</i>) Exposed to Perfluorooctane Sulfonate (PFOS): Integrative Histopathology and Transcriptomics Analysis.","authors":"Lin Tang, Guijie Hao, Dongren Zhou, Yunpeng Fan, Zihao Wei, Dongsheng Li, Yafang Shen, Haoyu Fang, Feng Lin, Meirong Zhao, Haiqi Zhang","doi":"10.3390/ani15040610","DOIUrl":null,"url":null,"abstract":"<p><p>Perfluorooctane sulfonate (PFOS) contamination poses a significant environmental threat due to its widespread distribution and persistence. However, the hepatotoxic effects of PFOS on key aquatic species, such as crucian carp, remain understudied. This study systematically investigated the hepatotoxicity and underlying molecular mechanisms associated with PFOS exposure in crucian carp over a 21 day period. We determined a 96 h 50% lethal concentration (LC<sub>50</sub>) of 23.17 mg/L. Histopathological and transcriptomic analyses confirmed PFOS-induced liver damage in the carp, characterized by venous congestion, nucleolar dissolution and cellular vacuolation. Transcriptomic profiling further identified 1036 differentially expressed genes (DEGs), involving critical pathways related to lipid and energy metabolism, immunity, and endocrine regulation. These pathways are integral to the development of nonalcoholic fatty liver disease (NAFLD). Specifically, DEGs related to lipid metabolism showed significant changes, while those involved in energy metabolism indicated disrupted ATP production and mitochondrial function. Genes associated with immune response revealed an upregulation of pro-inflammatory markers, and hormone regulation genes highlighted alterations in endocrine signaling. Our findings emphasized that PFOS exhibits acute toxicity to crucian carp, potentially inducing hepatotoxicity by disrupting multiple physiological systems. This research provides a theoretical foundation for mitigating aquatic pollution and protecting eco-health, contributing to broader ecological and conservation biology discussions.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15040610","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluorooctane sulfonate (PFOS) contamination poses a significant environmental threat due to its widespread distribution and persistence. However, the hepatotoxic effects of PFOS on key aquatic species, such as crucian carp, remain understudied. This study systematically investigated the hepatotoxicity and underlying molecular mechanisms associated with PFOS exposure in crucian carp over a 21 day period. We determined a 96 h 50% lethal concentration (LC50) of 23.17 mg/L. Histopathological and transcriptomic analyses confirmed PFOS-induced liver damage in the carp, characterized by venous congestion, nucleolar dissolution and cellular vacuolation. Transcriptomic profiling further identified 1036 differentially expressed genes (DEGs), involving critical pathways related to lipid and energy metabolism, immunity, and endocrine regulation. These pathways are integral to the development of nonalcoholic fatty liver disease (NAFLD). Specifically, DEGs related to lipid metabolism showed significant changes, while those involved in energy metabolism indicated disrupted ATP production and mitochondrial function. Genes associated with immune response revealed an upregulation of pro-inflammatory markers, and hormone regulation genes highlighted alterations in endocrine signaling. Our findings emphasized that PFOS exhibits acute toxicity to crucian carp, potentially inducing hepatotoxicity by disrupting multiple physiological systems. This research provides a theoretical foundation for mitigating aquatic pollution and protecting eco-health, contributing to broader ecological and conservation biology discussions.

暴露于全氟辛烷磺酸(PFOS)的鲤鱼(Carassius auratus)的肝脏毒性:组织病理学和转录组学综合分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信