Structural insights of AKT and its activation mechanism for drug development.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
B Harish Kumar, Shama Prasada Kabekkodu, K Sreedhara Ranganath Pai
{"title":"Structural insights of AKT and its activation mechanism for drug development.","authors":"B Harish Kumar, Shama Prasada Kabekkodu, K Sreedhara Ranganath Pai","doi":"10.1007/s11030-025-11132-7","DOIUrl":null,"url":null,"abstract":"<p><p>AKT1, a serine/threonine kinase, is pivotal in signaling and regulating cell survival, proliferation, and metabolism. This review focuses on the structural insights and the essential features required for its active conformation. AKT belongs to the AGC kinase group and has three isoforms: AKT1, AKT2, and AKT3. AKT has three functional regions: PH domain, kinase domain, and hydrophobic motif. AKT1 activation involves intricate conformational changes, including transitions in the αC-in, DFG-in, G-loop, activation loop, and PH domain out, S-spine and R-spine formation, as well as phosphorylation at Thr 308 and Ser 473, which enable AKT1 to adopt active conformation. The analysis highlights the limitations of the AlphaFold-predicted AKT1 structure, which lacks key elements of the active state, including ATP, magnesium ion coordination, phosphatidylinositol-(1,3,4,5)-tetraphosphate, substrate peptide, and phosphorylation at Thr 308 and Ser 473. This study underscores the necessity of these features for stabilizing the kinase domain and facilitating efficient substrate phosphorylation. By consolidating structural insights and activation mechanisms, this review aims to inform the development of computational models and targeted therapeutics for AKT1 activators in diseases such as hepatic ischemia-reperfusion injury, cerebral ischemia, acute hepatic failure, subarachnoid hemorrhage, and alzheimer's disease.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11132-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

AKT1, a serine/threonine kinase, is pivotal in signaling and regulating cell survival, proliferation, and metabolism. This review focuses on the structural insights and the essential features required for its active conformation. AKT belongs to the AGC kinase group and has three isoforms: AKT1, AKT2, and AKT3. AKT has three functional regions: PH domain, kinase domain, and hydrophobic motif. AKT1 activation involves intricate conformational changes, including transitions in the αC-in, DFG-in, G-loop, activation loop, and PH domain out, S-spine and R-spine formation, as well as phosphorylation at Thr 308 and Ser 473, which enable AKT1 to adopt active conformation. The analysis highlights the limitations of the AlphaFold-predicted AKT1 structure, which lacks key elements of the active state, including ATP, magnesium ion coordination, phosphatidylinositol-(1,3,4,5)-tetraphosphate, substrate peptide, and phosphorylation at Thr 308 and Ser 473. This study underscores the necessity of these features for stabilizing the kinase domain and facilitating efficient substrate phosphorylation. By consolidating structural insights and activation mechanisms, this review aims to inform the development of computational models and targeted therapeutics for AKT1 activators in diseases such as hepatic ischemia-reperfusion injury, cerebral ischemia, acute hepatic failure, subarachnoid hemorrhage, and alzheimer's disease.

AKT的结构及其在药物开发中的激活机制。
AKT1是一种丝氨酸/苏氨酸激酶,在信号传导和调节细胞存活、增殖和代谢中起关键作用。本文对其构造认识和主动构象的基本特征进行了综述。AKT属于AGC激酶群,有三个亚型:AKT1、AKT2和AKT3。AKT有三个功能区域:PH结构域、激酶结构域和疏水基序。AKT1的激活涉及复杂的构象变化,包括αC-in、DFG-in、G-loop、激活环和PH域out的转变,S-spine和R-spine的形成,以及Thr 308和Ser 473位点的磷酸化,使AKT1具有活性构象。该分析强调了alphafold预测的AKT1结构的局限性,该结构缺乏活性状态的关键元素,包括ATP,镁离子配位,磷脂酰肌醇-(1,3,4,5)-四磷酸,底物肽以及Thr 308和Ser 473的磷酸化。这项研究强调了这些特征对于稳定激酶结构域和促进有效的底物磷酸化的必要性。通过巩固结构见解和激活机制,本综述旨在为AKT1激活剂在肝缺血-再灌注损伤、脑缺血、急性肝衰竭、蛛网膜下腔出血和阿尔茨海默病等疾病中的计算模型和靶向治疗提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信