NIR-II Fluorescent Protein Created by In Situ Albumin-Tagging for Sensitive and Specific Imaging of Blood-Brain Barrier Disruption.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiajun Xu, Yijing Du, Ningning Zhu, Jia Li, Yuewei Zhang, Ding Zhou, Shoujun Zhu
{"title":"NIR-II Fluorescent Protein Created by In Situ Albumin-Tagging for Sensitive and Specific Imaging of Blood-Brain Barrier Disruption.","authors":"Jiajun Xu, Yijing Du, Ningning Zhu, Jia Li, Yuewei Zhang, Ding Zhou, Shoujun Zhu","doi":"10.1002/advs.202500443","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging albumin in vivo is a reliable strategy to visualize blood-brain barrier (BBB) disruption by detecting the dye-labeled albumin leaking into brain parenchyma. Although Evans Blue (EB) and indocyanine green (ICG) dyes have been applied to assess BBB impairment, their naked-eye observation or near-infrared-I (NIR-I) imaging window limit the imaging sensitivity and contrast for this promising \"albumin-based\" strategy. Herein, an albumin-specific tagged near-infrared-II (NIR-II) probe is engineered as a chromophore to construct fluorescent proteins (FPs) in situ for assessing BBB disruption in stroke. The optimized chromophore, C7-1080, can covalently bind to albumin through nucleophilic substitution, forming FPs without adjuvant. Notably, the albumin effectively acts as a brightness enhancer and stability regulator for chromophores through the tight clamping effect. Theoretical simulation, proteomics, and protein mutation techniques are employed to investigate the binding behavior between albumin and chromophore. The in situ NIR-II FPs construction strategy facilitates high-precision dual-channel imaging of BBB disruption and cerebral vessels during ischemic stroke when combined with the IR-808Ac probe. Overall, the in situ albumin-specific tag holds promise for diagnosing and monitoring strokes, presenting a tool for investigating the progression and therapeutic responses of related diseases.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2500443"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202500443","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Imaging albumin in vivo is a reliable strategy to visualize blood-brain barrier (BBB) disruption by detecting the dye-labeled albumin leaking into brain parenchyma. Although Evans Blue (EB) and indocyanine green (ICG) dyes have been applied to assess BBB impairment, their naked-eye observation or near-infrared-I (NIR-I) imaging window limit the imaging sensitivity and contrast for this promising "albumin-based" strategy. Herein, an albumin-specific tagged near-infrared-II (NIR-II) probe is engineered as a chromophore to construct fluorescent proteins (FPs) in situ for assessing BBB disruption in stroke. The optimized chromophore, C7-1080, can covalently bind to albumin through nucleophilic substitution, forming FPs without adjuvant. Notably, the albumin effectively acts as a brightness enhancer and stability regulator for chromophores through the tight clamping effect. Theoretical simulation, proteomics, and protein mutation techniques are employed to investigate the binding behavior between albumin and chromophore. The in situ NIR-II FPs construction strategy facilitates high-precision dual-channel imaging of BBB disruption and cerebral vessels during ischemic stroke when combined with the IR-808Ac probe. Overall, the in situ albumin-specific tag holds promise for diagnosing and monitoring strokes, presenting a tool for investigating the progression and therapeutic responses of related diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信