Ziad Joha, Neslihan Başgöz, Aykut Özgür, Ahmet Şevki Taşkıran
{"title":"Bromelain Protects Against PTZ-Induced Glial Damage and Inflammation: An In Vitro and In Silico Study.","authors":"Ziad Joha, Neslihan Başgöz, Aykut Özgür, Ahmet Şevki Taşkıran","doi":"10.1007/s12013-025-01703-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate how bromelain protects glial cells from pentylenetetrazole (PTZ)-induced damage, focusing on its anti-inflammatory effects. C6 glioma cells were treated with PTZ, bromelain, or a combination of PTZ and bromelain. The interactions of bromelain with iNOS (Inducible Nitric Oxide Synthase) and COX2 (Cyclooxygenase-2) were investigated using molecular docking calculations. Cell viability was measured using the XTT (Methoxynitrosulfophenyl-Tetrazolium Carboxanilide) assay. iNOS, NO (Nitric Oxide), and COX2 levels were assessed using ELISA and immunofluorescence staining. Bromelain at 50 and 100 µg/mL significantly increased cell viability (p < 0.001). On the other hand, bromelain at 50 µg/mL reduced inflammation, as indicated by lower levels of NO, iNOS, and COX2 (p < 0.001). In-silico predictions suggest that bromelain can effectively target iNOS and COX2, key inflammatory proteins. These findings indicate that bromelain protects glial cells by exerting anti-inflammatory effects. However, further research is needed to understand the underlying mechanisms fully.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01703-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate how bromelain protects glial cells from pentylenetetrazole (PTZ)-induced damage, focusing on its anti-inflammatory effects. C6 glioma cells were treated with PTZ, bromelain, or a combination of PTZ and bromelain. The interactions of bromelain with iNOS (Inducible Nitric Oxide Synthase) and COX2 (Cyclooxygenase-2) were investigated using molecular docking calculations. Cell viability was measured using the XTT (Methoxynitrosulfophenyl-Tetrazolium Carboxanilide) assay. iNOS, NO (Nitric Oxide), and COX2 levels were assessed using ELISA and immunofluorescence staining. Bromelain at 50 and 100 µg/mL significantly increased cell viability (p < 0.001). On the other hand, bromelain at 50 µg/mL reduced inflammation, as indicated by lower levels of NO, iNOS, and COX2 (p < 0.001). In-silico predictions suggest that bromelain can effectively target iNOS and COX2, key inflammatory proteins. These findings indicate that bromelain protects glial cells by exerting anti-inflammatory effects. However, further research is needed to understand the underlying mechanisms fully.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.