Developing Red and Near-Infrared Delayed Fluorescence Emission in Nitrogen-Substituted Donor-Acceptor Polycyclic Hydrocarbon OLED Emitters: A Theoretical Study.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Smruti Ranjan Sahoo, Glib V Baryshnikov, Hans Ågren
{"title":"Developing Red and Near-Infrared Delayed Fluorescence Emission in Nitrogen-Substituted Donor-Acceptor Polycyclic Hydrocarbon OLED Emitters: A Theoretical Study.","authors":"Smruti Ranjan Sahoo, Glib V Baryshnikov, Hans Ågren","doi":"10.1021/acs.jpca.4c07345","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen substitutions have shown a great impact for the development of thermally activated delayed fluorescence (TADF)-based organic light-emitting diode (OLED) materials. In particular, much focus has been devoted to nitrogen-substituted polycyclic aromatic hydrocarbons (PAHs) for TADF emitters. In this context, we provide here a molecular design approach for symmetric nitrogen substitutions in fused benzene ring PAHs based on the dibenzo[<i>a</i>,<i>c</i>]picene (DBP) molecule. We designed possible donor-acceptor (D-A) compounds with dimethylcarbazole (DMCz) and dimethyldiphenylamine (DMDPA) donors and studied the structure and photophysics of the designed D-A compounds. The twisted and extended D-A-type PAH emitters demonstrate red and near-infrared (NIR) TADF emission. Nitrogen substitutions lead to significant LUMO stabilization and reduced HOMO-LUMO energy gaps as well. Additionally, we computed significantly smaller singlet-triplet energy splittings (Δ<i>E</i><sub>ST</sub>) in comparison to non-nitrogen-substituted compounds. The investigated <i>ortho</i>-linked D-A compounds show relatively large donor-acceptor twisting separation and small Δ<i>E</i><sub>ST</sub> compared to their <i>para</i>-linked counterparts. For higher number nitrogen (4N)-substituted emitters, we predict small adiabatic Δ<i>E</i><sub>ST</sub> (Δ<i>E</i><sub>ST</sub><sup>adia</sup>) in the range 0.01-0.13 eV, and with the <i>tert</i>-butylated donors, we even obtained Δ<i>E</i><sub>ST</sub><sup>adia</sup> values as small as 0.007 eV. Computed spin-orbit coupling (SOC) for the T<sub>1</sub> triplet state on the order of 0.12-2.28 cm<sup>-1</sup> suggests significant repopulation of singlet charge transfer (<sup>1</sup>CT) excitons from the triplet CT and locally excited (<sup>3</sup>CT+LE) states. Importantly, the small Δ<i>E</i><sub>ST</sub><sup>adia</sup> and large SOC values induce a reverse intersystem crossing (RISC) rate as high as 1 × 10<sup>6</sup> s<sup>-1</sup>, which will cause red and NIR delayed fluorescence in the 4N-substituted D-A emitters. Notably, we predict red TADF emission for the <i>para</i>-linked compound <b>B4</b> at 670 nm and the <i>ortho</i>-linked compound <b>D4</b> at 713 nm and delayed NIR emission at 987 and 1217 nm for the <i>ortho</i>-linked compounds <b>D3</b> and <b>E3</b>, respectively.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07345","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen substitutions have shown a great impact for the development of thermally activated delayed fluorescence (TADF)-based organic light-emitting diode (OLED) materials. In particular, much focus has been devoted to nitrogen-substituted polycyclic aromatic hydrocarbons (PAHs) for TADF emitters. In this context, we provide here a molecular design approach for symmetric nitrogen substitutions in fused benzene ring PAHs based on the dibenzo[a,c]picene (DBP) molecule. We designed possible donor-acceptor (D-A) compounds with dimethylcarbazole (DMCz) and dimethyldiphenylamine (DMDPA) donors and studied the structure and photophysics of the designed D-A compounds. The twisted and extended D-A-type PAH emitters demonstrate red and near-infrared (NIR) TADF emission. Nitrogen substitutions lead to significant LUMO stabilization and reduced HOMO-LUMO energy gaps as well. Additionally, we computed significantly smaller singlet-triplet energy splittings (ΔEST) in comparison to non-nitrogen-substituted compounds. The investigated ortho-linked D-A compounds show relatively large donor-acceptor twisting separation and small ΔEST compared to their para-linked counterparts. For higher number nitrogen (4N)-substituted emitters, we predict small adiabatic ΔESTESTadia) in the range 0.01-0.13 eV, and with the tert-butylated donors, we even obtained ΔESTadia values as small as 0.007 eV. Computed spin-orbit coupling (SOC) for the T1 triplet state on the order of 0.12-2.28 cm-1 suggests significant repopulation of singlet charge transfer (1CT) excitons from the triplet CT and locally excited (3CT+LE) states. Importantly, the small ΔESTadia and large SOC values induce a reverse intersystem crossing (RISC) rate as high as 1 × 106 s-1, which will cause red and NIR delayed fluorescence in the 4N-substituted D-A emitters. Notably, we predict red TADF emission for the para-linked compound B4 at 670 nm and the ortho-linked compound D4 at 713 nm and delayed NIR emission at 987 and 1217 nm for the ortho-linked compounds D3 and E3, respectively.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信