{"title":"One-Pot Synthesis and Characterization of Naringenin-Capped Silver Nanoparticles with Enhanced Biological Activities.","authors":"Neelima Sathianathan, Vipina Vinod Thazhenandayipurath, Aparna Vadakoot Mukundan, Aparna Raj, Vidya Latha, Radhakrishnan Edayileveetil Krishnankutty, Sudarsanakumar Chellappanpillai","doi":"10.1007/s12010-025-05181-9","DOIUrl":null,"url":null,"abstract":"<p><p>Flavonoids are known to possess biological effects like anti-inflammatory, antibacterial, antioxidant, and antidiabetic properties. Similarly, silver nanoparticles (AgNPs) have been widely used in the biomedical industry for therapy and diagnostics for a long time. This study investigates the potential of naringenin functionalized silver nanoparticles (AgN NPs) as a potential wound healing agent. The synthesis of AgN NPs was carried out using the one-pot synthesis method in the alkaline pH. Naringenin is used as the capping and the reducing agent. The naringenin-capped AgNPs were synthesized in six different concentrations. The structural, morphological, and spectroscopic characterization for each sample was conducted. The size of the nanoparticles was studied using the dynamic light scattering (DLS) experiment and further confirmed using TEM. The crystalline structure was investigated using X-ray diffraction, and AgN NPs exhibited a fcc crystal structure. The FTIR confirmed the capping of naringenin on AgNPs. All samples were tested for antibacterial activity, and the results demonstrated zones of inhibition against both Gram-positive Staphylococcus aureus and Gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa. Also, AgN NPs exhibited dose-dependent anti-inflammatory, antioxidant, and antidiabetic properties. The wound healing potential of AgN NPs was evaluated using a scratch wound assay in L929 cell lines. After 24 h, the scratch area was significantly reduced in the AgN NPs-treated sample, indicating enhanced cell migration compared to naringenin. Hence, these findings suggest that AgN NPs may serve as a more promising wound-healing agent than naringenin.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05181-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Flavonoids are known to possess biological effects like anti-inflammatory, antibacterial, antioxidant, and antidiabetic properties. Similarly, silver nanoparticles (AgNPs) have been widely used in the biomedical industry for therapy and diagnostics for a long time. This study investigates the potential of naringenin functionalized silver nanoparticles (AgN NPs) as a potential wound healing agent. The synthesis of AgN NPs was carried out using the one-pot synthesis method in the alkaline pH. Naringenin is used as the capping and the reducing agent. The naringenin-capped AgNPs were synthesized in six different concentrations. The structural, morphological, and spectroscopic characterization for each sample was conducted. The size of the nanoparticles was studied using the dynamic light scattering (DLS) experiment and further confirmed using TEM. The crystalline structure was investigated using X-ray diffraction, and AgN NPs exhibited a fcc crystal structure. The FTIR confirmed the capping of naringenin on AgNPs. All samples were tested for antibacterial activity, and the results demonstrated zones of inhibition against both Gram-positive Staphylococcus aureus and Gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa. Also, AgN NPs exhibited dose-dependent anti-inflammatory, antioxidant, and antidiabetic properties. The wound healing potential of AgN NPs was evaluated using a scratch wound assay in L929 cell lines. After 24 h, the scratch area was significantly reduced in the AgN NPs-treated sample, indicating enhanced cell migration compared to naringenin. Hence, these findings suggest that AgN NPs may serve as a more promising wound-healing agent than naringenin.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.