Harald Putterman, Kyungjoo Noh, Connor T. Hann, Gregory S. MacCabe, Shahriar Aghaeimeibodi, Rishi N. Patel, Menyoung Lee, William M. Jones, Hesam Moradinejad, Roberto Rodriguez, Neha Mahuli, Jefferson Rose, John Clai Owens, Harry Levine, Emma Rosenfeld, Philip Reinhold, Lorenzo Moncelsi, Joshua Ari Alcid, Nasser Alidoust, Patricio Arrangoiz-Arriola, James Barnett, Przemyslaw Bienias, Hugh A. Carson, Cliff Chen, Li Chen, Harutiun Chinkezian, Eric M. Chisholm, Ming-Han Chou, Aashish Clerk, Andrew Clifford, R. Cosmic, Ana Valdes Curiel, Erik Davis, Laura DeLorenzo, J. Mitchell D’Ewart, Art Diky, Nathan D’Souza, Philipp T. Dumitrescu, Shmuel Eisenmann, Essam Elkhouly, Glen Evenbly, Michael T. Fang, Yawen Fang, Matthew J. Fling, Warren Fon, Gabriel Garcia, Alexey V. Gorshkov, Julia A. Grant, Mason J. Gray, Sebastian Grimberg, Arne L. Grimsmo, Arbel Haim, Justin Hand, Yuan He, Mike Hernandez, David Hover, Jimmy S. C. Hung, Matthew Hunt, Joe Iverson, Ignace Jarrige, Jean-Christophe Jaskula, Liang Jiang, Mahmoud Kalaee, Rassul Karabalin, Peter J. Karalekas, Andrew J. Keller, Amirhossein Khalajhedayati, Aleksander Kubica, Hanho Lee, Catherine Leroux, Simon Lieu, Victor Ly, Keven Villegas Madrigal, Guillaume Marcaud, Gavin McCabe, Cody Miles, Ashley Milsted, Joaquin Minguzzi, Anurag Mishra, Biswaroop Mukherjee, Mahdi Naghiloo, Eric Oblepias, Gerson Ortuno, Jason Pagdilao, Nicola Pancotti, Ashley Panduro, JP Paquette, Minje Park, Gregory A. Peairs, David Perello, Eric C. Peterson, Sophia Ponte, John Preskill, Johnson Qiao, Gil Refael, Rachel Resnick, Alex Retzker, Omar A. Reyna, Marc Runyan, Colm A. Ryan, Abdulrahman Sahmoud, Ernesto Sanchez, Rohan Sanil, Krishanu Sankar, Yuki Sato, Thomas Scaffidi, Salome Siavoshi, Prasahnt Sivarajah, Trenton Skogland, Chun-Ju Su, Loren J. Swenson, Stephanie M. Teo, Astrid Tomada, Giacomo Torlai, E. Alex Wollack, Yufeng Ye, Jessica A. Zerrudo, Kailing Zhang, Fernando G. S. L. Brandão, Matthew H. Matheny, Oskar Painter
{"title":"Hardware-efficient quantum error correction via concatenated bosonic qubits","authors":"Harald Putterman, Kyungjoo Noh, Connor T. Hann, Gregory S. MacCabe, Shahriar Aghaeimeibodi, Rishi N. Patel, Menyoung Lee, William M. Jones, Hesam Moradinejad, Roberto Rodriguez, Neha Mahuli, Jefferson Rose, John Clai Owens, Harry Levine, Emma Rosenfeld, Philip Reinhold, Lorenzo Moncelsi, Joshua Ari Alcid, Nasser Alidoust, Patricio Arrangoiz-Arriola, James Barnett, Przemyslaw Bienias, Hugh A. Carson, Cliff Chen, Li Chen, Harutiun Chinkezian, Eric M. Chisholm, Ming-Han Chou, Aashish Clerk, Andrew Clifford, R. Cosmic, Ana Valdes Curiel, Erik Davis, Laura DeLorenzo, J. Mitchell D’Ewart, Art Diky, Nathan D’Souza, Philipp T. Dumitrescu, Shmuel Eisenmann, Essam Elkhouly, Glen Evenbly, Michael T. Fang, Yawen Fang, Matthew J. Fling, Warren Fon, Gabriel Garcia, Alexey V. Gorshkov, Julia A. Grant, Mason J. Gray, Sebastian Grimberg, Arne L. Grimsmo, Arbel Haim, Justin Hand, Yuan He, Mike Hernandez, David Hover, Jimmy S. C. Hung, Matthew Hunt, Joe Iverson, Ignace Jarrige, Jean-Christophe Jaskula, Liang Jiang, Mahmoud Kalaee, Rassul Karabalin, Peter J. Karalekas, Andrew J. Keller, Amirhossein Khalajhedayati, Aleksander Kubica, Hanho Lee, Catherine Leroux, Simon Lieu, Victor Ly, Keven Villegas Madrigal, Guillaume Marcaud, Gavin McCabe, Cody Miles, Ashley Milsted, Joaquin Minguzzi, Anurag Mishra, Biswaroop Mukherjee, Mahdi Naghiloo, Eric Oblepias, Gerson Ortuno, Jason Pagdilao, Nicola Pancotti, Ashley Panduro, JP Paquette, Minje Park, Gregory A. Peairs, David Perello, Eric C. Peterson, Sophia Ponte, John Preskill, Johnson Qiao, Gil Refael, Rachel Resnick, Alex Retzker, Omar A. Reyna, Marc Runyan, Colm A. Ryan, Abdulrahman Sahmoud, Ernesto Sanchez, Rohan Sanil, Krishanu Sankar, Yuki Sato, Thomas Scaffidi, Salome Siavoshi, Prasahnt Sivarajah, Trenton Skogland, Chun-Ju Su, Loren J. Swenson, Stephanie M. Teo, Astrid Tomada, Giacomo Torlai, E. Alex Wollack, Yufeng Ye, Jessica A. Zerrudo, Kailing Zhang, Fernando G. S. L. Brandão, Matthew H. Matheny, Oskar Painter","doi":"10.1038/s41586-025-08642-7","DOIUrl":null,"url":null,"abstract":"To solve problems of practical importance1,2, quantum computers probably need to incorporate quantum error correction, in which a logical qubit is redundantly encoded in many noisy physical qubits3–5. The large physical-qubit overhead associated with error correction motivates the search for more hardware-efficient approaches6–18. Here, using a superconducting quantum circuit19, we realize a logical qubit memory formed from the concatenation of encoded bosonic cat qubits with an outer repetition code of distance d = 5 (ref. 10). A stabilizing circuit passively protects cat qubits against bit flips20–24. The repetition code, using ancilla transmons for syndrome measurement, corrects cat qubit phase flips. We study the performance and scaling of the logical qubit memory, finding that the phase-flip correcting repetition code operates below the threshold. The logical bit-flip error is suppressed with increasing cat qubit mean photon number, enabled by our realization of a cat-transmon noise-biased CX gate. The minimum measured logical error per cycle is on average 1.75(2)% for the distance-3 code sections, and 1.65(3)% for the distance-5 code. Despite the increased number of fault locations of the distance-5 code, the high degree of noise bias preserved during error correction enables comparable performance. These results, where the intrinsic error suppression of the bosonic encodings enables us to use a hardware-efficient outer error-correcting code, indicate that concatenated bosonic codes can be a compelling model for reaching fault-tolerant quantum computation. Bosonic qubits can be engineered to feature intrinsic protection against certain kinds of errors, which makes quantum error correction across many bosonic qubits possible with less overhead.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"638 8052","pages":"927-934"},"PeriodicalIF":48.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-025-08642-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-08642-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To solve problems of practical importance1,2, quantum computers probably need to incorporate quantum error correction, in which a logical qubit is redundantly encoded in many noisy physical qubits3–5. The large physical-qubit overhead associated with error correction motivates the search for more hardware-efficient approaches6–18. Here, using a superconducting quantum circuit19, we realize a logical qubit memory formed from the concatenation of encoded bosonic cat qubits with an outer repetition code of distance d = 5 (ref. 10). A stabilizing circuit passively protects cat qubits against bit flips20–24. The repetition code, using ancilla transmons for syndrome measurement, corrects cat qubit phase flips. We study the performance and scaling of the logical qubit memory, finding that the phase-flip correcting repetition code operates below the threshold. The logical bit-flip error is suppressed with increasing cat qubit mean photon number, enabled by our realization of a cat-transmon noise-biased CX gate. The minimum measured logical error per cycle is on average 1.75(2)% for the distance-3 code sections, and 1.65(3)% for the distance-5 code. Despite the increased number of fault locations of the distance-5 code, the high degree of noise bias preserved during error correction enables comparable performance. These results, where the intrinsic error suppression of the bosonic encodings enables us to use a hardware-efficient outer error-correcting code, indicate that concatenated bosonic codes can be a compelling model for reaching fault-tolerant quantum computation. Bosonic qubits can be engineered to feature intrinsic protection against certain kinds of errors, which makes quantum error correction across many bosonic qubits possible with less overhead.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.