Chemoselective Oxidation of Sulfides and Oxidative Coupling of Thiols by a New Polyoxometalate and Heterogeneous Cobalt and Molybdenum Hybrid Nanocatalyst Stabilized on Modified Mesoporous CMK-3
{"title":"Chemoselective Oxidation of Sulfides and Oxidative Coupling of Thiols by a New Polyoxometalate and Heterogeneous Cobalt and Molybdenum Hybrid Nanocatalyst Stabilized on Modified Mesoporous CMK-3","authors":"Amin Zeinivand-Lorestani, Alireza Taheri, Bahman Tahmasbi","doi":"10.1002/aoc.7997","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, a new heterogeneous cobalt and molybdenum hybrid-substituted polyoxometate was stabilized on mesoporous CMK-3 (PMo11Co@CMK-3) as a durable, effectual, recyclable, environment-friendly, and chemoselective nanocatalyst. PMo<sub>11</sub>Co@CMK-3 catalyst was identified by various techniques such as BET, SEM, EDS, and FT-IR. Sulfoxides and disulfides were formed using PMo<sub>11</sub>Co@CMK-3 through selective sulfides oxidation and oxidative coupling of thiols, respectively. The proposed method is an effective method, and the mentioned reactions are performed in a short time with very high efficiency. In order to produce sulfoxides and disulfides, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was selected as an environmentally friendly, safe, attainable, and inexpensive oxidant, with only water as a byproduct. This catalyst shows the heterogeneous and insolubility nature, notable chemoselectivity, good durability, and reusability in the oxidation of sulfides and oxidative coupling of thiols. In addition, sulfoxides and disulfides were synthesized under solvent-free conditions, which is an ideal condition for environmental health and economic savings. All sulfoxide and disulfide products were obtained with high yields within short reaction times.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"39 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7997","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a new heterogeneous cobalt and molybdenum hybrid-substituted polyoxometate was stabilized on mesoporous CMK-3 (PMo11Co@CMK-3) as a durable, effectual, recyclable, environment-friendly, and chemoselective nanocatalyst. PMo11Co@CMK-3 catalyst was identified by various techniques such as BET, SEM, EDS, and FT-IR. Sulfoxides and disulfides were formed using PMo11Co@CMK-3 through selective sulfides oxidation and oxidative coupling of thiols, respectively. The proposed method is an effective method, and the mentioned reactions are performed in a short time with very high efficiency. In order to produce sulfoxides and disulfides, hydrogen peroxide (H2O2) was selected as an environmentally friendly, safe, attainable, and inexpensive oxidant, with only water as a byproduct. This catalyst shows the heterogeneous and insolubility nature, notable chemoselectivity, good durability, and reusability in the oxidation of sulfides and oxidative coupling of thiols. In addition, sulfoxides and disulfides were synthesized under solvent-free conditions, which is an ideal condition for environmental health and economic savings. All sulfoxide and disulfide products were obtained with high yields within short reaction times.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.