Scalable method for exploring phylogenetic placement uncertainty with custom visualizations using treeio and ggtree

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2025-01-12 DOI:10.1002/imt2.269
Meijun Chen, Xiao Luo, Shuangbin Xu, Lin Li, Junrui Li, Zijing Xie, Qianwen Wang, Yufan Liao, Bingdong Liu, Wenquan Liang, Ke Mo, Qiong Song, Xia Chen, Tommy Tsan-Yuk Lam, Guangchuang Yu
{"title":"Scalable method for exploring phylogenetic placement uncertainty with custom visualizations using treeio and ggtree","authors":"Meijun Chen,&nbsp;Xiao Luo,&nbsp;Shuangbin Xu,&nbsp;Lin Li,&nbsp;Junrui Li,&nbsp;Zijing Xie,&nbsp;Qianwen Wang,&nbsp;Yufan Liao,&nbsp;Bingdong Liu,&nbsp;Wenquan Liang,&nbsp;Ke Mo,&nbsp;Qiong Song,&nbsp;Xia Chen,&nbsp;Tommy Tsan-Yuk Lam,&nbsp;Guangchuang Yu","doi":"10.1002/imt2.269","DOIUrl":null,"url":null,"abstract":"<p>In metabarcoding research, such as taxon identification, phylogenetic placement plays a critical role. However, many existing phylogenetic placement methods lack comprehensive features for downstream analysis and visualization. Visualization tools often ignore placement uncertainty, making it difficult to explore and interpret placement data effectively. To overcome these limitations, we introduce a scalable approach using <i>treeio</i> and <i>ggtree</i> for parsing and visualizing phylogenetic placement data. The <i>treeio</i>-<i>ggtree</i> method supports placement filtration, uncertainty exploration, and customized visualization. It enhances scalability for large analyses by enabling users to extract subtrees from the full reference tree, focusing on specific samples within a clade. Additionally, this approach provides a clearer representation of phylogenetic placement uncertainty by visualizing associated placement information on the final placement tree.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"4 1","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.269","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In metabarcoding research, such as taxon identification, phylogenetic placement plays a critical role. However, many existing phylogenetic placement methods lack comprehensive features for downstream analysis and visualization. Visualization tools often ignore placement uncertainty, making it difficult to explore and interpret placement data effectively. To overcome these limitations, we introduce a scalable approach using treeio and ggtree for parsing and visualizing phylogenetic placement data. The treeio-ggtree method supports placement filtration, uncertainty exploration, and customized visualization. It enhances scalability for large analyses by enabling users to extract subtrees from the full reference tree, focusing on specific samples within a clade. Additionally, this approach provides a clearer representation of phylogenetic placement uncertainty by visualizing associated placement information on the final placement tree.

Abstract Image

使用treeio和ggtree自定义可视化探索系统发育位置不确定性的可扩展方法
在分类群鉴定等元条形码研究中,系统发育定位起着至关重要的作用。然而,许多现有的系统发育定位方法缺乏下游分析和可视化的综合功能。可视化工具经常忽略位置的不确定性,这使得有效地探索和解释位置数据变得困难。为了克服这些限制,我们引入了一种可扩展的方法,使用treeio和ggtree来解析和可视化系统发育定位数据。treeio-ggtree方法支持位置过滤、不确定性探索和自定义可视化。它通过使用户能够从完整的参考树中提取子树,从而增强了大型分析的可伸缩性,专注于分支中的特定样本。此外,该方法通过可视化最终定位树上的相关定位信息,提供了更清晰的系统发育定位不确定性表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信