{"title":"Cross-tissue multi-omics analyses reveal the gut microbiota's absence impacts organ morphology, immune homeostasis, bile acid and lipid metabolism","authors":"Juan Shen, Weiming Liang, Ruizhen Zhao, Yang Chen, Yanmin Liu, Wei Cheng, Tailiang Chai, Yin Zhang, Silian Chen, Jiazhe Liu, Xueting Chen, Yusheng Deng, Zhao Zhang, Yufen Huang, Huanjie Yang, Li Pang, Qinwei Qiu, Haohao Deng, Shanshan Pan, Linying Wang, Jingjing Ye, Wen Luo, Xuanting Jiang, Xiao Huang, Wanshun Li, Elaine Lai-Han Leung, Lu Zhang, Li Huang, Zhimin Yang, Rouxi Chen, Junpu Mei, Zhen Yue, Hong Wei, Kristiansen Karsten, Lijuan Han, Xiaodong Fang","doi":"10.1002/imt2.272","DOIUrl":null,"url":null,"abstract":"<p>The gut microbiota influences host immunity and metabolism, and changes in its composition and function have been implicated in several non-communicable diseases. Here, comparing germ-free (GF) and specific pathogen-free (SPF) mice using spatial transcriptomics, single-cell RNA sequencing, and targeted bile acid metabolomics across multiple organs, we systematically assessed how the gut microbiota's absence affected organ morphology, immune homeostasis, bile acid, and lipid metabolism. Through integrated analysis, we detect marked aberration in B, myeloid, and T/natural killer cells, altered mucosal zonation and nutrient uptake, and significant shifts in bile acid profiles in feces, liver, and circulation, with the alternate synthesis pathway predominant in GF mice and pronounced changes in bile acid enterohepatic circulation. Particularly, autophagy-driven lipid droplet breakdown in ileum epithelium and the liver's zinc finger and BTB domain-containing protein (ZBTB20)-Lipoprotein lipase (LPL) (ZBTB20-LPL) axis are key to plasma lipid homeostasis in GF mice. Our results unveil the complexity of microbiota–host interactions in the crosstalk between commensal gut bacteria and the host.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"4 1","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.272","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The gut microbiota influences host immunity and metabolism, and changes in its composition and function have been implicated in several non-communicable diseases. Here, comparing germ-free (GF) and specific pathogen-free (SPF) mice using spatial transcriptomics, single-cell RNA sequencing, and targeted bile acid metabolomics across multiple organs, we systematically assessed how the gut microbiota's absence affected organ morphology, immune homeostasis, bile acid, and lipid metabolism. Through integrated analysis, we detect marked aberration in B, myeloid, and T/natural killer cells, altered mucosal zonation and nutrient uptake, and significant shifts in bile acid profiles in feces, liver, and circulation, with the alternate synthesis pathway predominant in GF mice and pronounced changes in bile acid enterohepatic circulation. Particularly, autophagy-driven lipid droplet breakdown in ileum epithelium and the liver's zinc finger and BTB domain-containing protein (ZBTB20)-Lipoprotein lipase (LPL) (ZBTB20-LPL) axis are key to plasma lipid homeostasis in GF mice. Our results unveil the complexity of microbiota–host interactions in the crosstalk between commensal gut bacteria and the host.