Microstructure and Mechanical Properties of Bimetallic Structure Fabricated through Wire Plus Arc Additive Manufacturing

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Vijayakumar Murugesan Devarajan, Dhinakaran Veeman, Mohan Kumar Subramaniyan, Sanjay Kannan
{"title":"Microstructure and Mechanical Properties of Bimetallic Structure Fabricated through Wire Plus Arc Additive Manufacturing","authors":"Vijayakumar Murugesan Devarajan,&nbsp;Dhinakaran Veeman,&nbsp;Mohan Kumar Subramaniyan,&nbsp;Sanjay Kannan","doi":"10.1002/srin.202400663","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the fabrication and mechanical assessment of bimetallic structure (BMS) wall using wire plus arc additive manufacturing (WAAM) technology, employing stainless steel (SS) 304 and SS 308L SS filler wire. The usage of BMS is promoted due to the limitation faced during dissimilar welding of the SS grades. The high or improper melting of the interface will lead to elemental segregation, leading to structural failure. Producing seamless BMS plates will be an ideal replacement for dissimilarly welded joints. Notably, 308L SS demonstrates superior mechanical properties compared to 304 SS, exhibiting impressive tensile strength (TS) and exceptional ductility. BMS, constructed with 308L filler wire, closely matches these better mechanical attributes, making it an attractive choice for applications prioritizing mechanical performance. Furthermore, when compared to WAAM-processed SS 304, BMS consistently outperforms in terms of TS while retaining remarkable ductility. This is due to the variation in the microstructure caused by complex thermal cycles. Hence, this research provides valuable insights into manufacturing and characterization of BMS, emphasizing the potential of WAAM-processed BMS (SS 304/SS 308L) in engineering applications demanding superior mechanical properties while replacing dissimilar joints in the fields of aerospace, aviation, automobile, and power generation industries.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400663","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the fabrication and mechanical assessment of bimetallic structure (BMS) wall using wire plus arc additive manufacturing (WAAM) technology, employing stainless steel (SS) 304 and SS 308L SS filler wire. The usage of BMS is promoted due to the limitation faced during dissimilar welding of the SS grades. The high or improper melting of the interface will lead to elemental segregation, leading to structural failure. Producing seamless BMS plates will be an ideal replacement for dissimilarly welded joints. Notably, 308L SS demonstrates superior mechanical properties compared to 304 SS, exhibiting impressive tensile strength (TS) and exceptional ductility. BMS, constructed with 308L filler wire, closely matches these better mechanical attributes, making it an attractive choice for applications prioritizing mechanical performance. Furthermore, when compared to WAAM-processed SS 304, BMS consistently outperforms in terms of TS while retaining remarkable ductility. This is due to the variation in the microstructure caused by complex thermal cycles. Hence, this research provides valuable insights into manufacturing and characterization of BMS, emphasizing the potential of WAAM-processed BMS (SS 304/SS 308L) in engineering applications demanding superior mechanical properties while replacing dissimilar joints in the fields of aerospace, aviation, automobile, and power generation industries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信