{"title":"Sparse Bayesian learning using hierarchical synthesis prior for STAP","authors":"Junxiang Cao, Tong Wang, Weichen Cui","doi":"10.1049/rsn2.70001","DOIUrl":null,"url":null,"abstract":"<p>Space–time adaptive processing (STAP) can effectively detect moving targets in the background of ground clutter, but the performance will drop sharply when the training samples are limited. In this paper, to improve the clutter suppression performance when the training samples are limited, the authors propose a novel STAP algorithm based on sparse Bayesian learning (SBL) using a hierarchical synthesis prior. Firstly, we construct a novel three-level hierarchical synthesis prior (HSP) model, which promotes the sparsity more significantly than traditional priors used in SBL. Secondly, in the framework of type-II maximum likelihood approach, a novel iterative update criterion for hyperparameters is derived. Thirdly, in order to reduce the computational burden, the authors design a novel local space–time dictionary to transform the full-dimensional clutter spectrum recovery problem into a local clutter spectrum recovery problem. Numerical results with both simulated and measured data demonstrate the excellent performance and relatively high computational efficiency of the proposed method.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70001","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Space–time adaptive processing (STAP) can effectively detect moving targets in the background of ground clutter, but the performance will drop sharply when the training samples are limited. In this paper, to improve the clutter suppression performance when the training samples are limited, the authors propose a novel STAP algorithm based on sparse Bayesian learning (SBL) using a hierarchical synthesis prior. Firstly, we construct a novel three-level hierarchical synthesis prior (HSP) model, which promotes the sparsity more significantly than traditional priors used in SBL. Secondly, in the framework of type-II maximum likelihood approach, a novel iterative update criterion for hyperparameters is derived. Thirdly, in order to reduce the computational burden, the authors design a novel local space–time dictionary to transform the full-dimensional clutter spectrum recovery problem into a local clutter spectrum recovery problem. Numerical results with both simulated and measured data demonstrate the excellent performance and relatively high computational efficiency of the proposed method.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.