Matrix Stiffness Regulates Interleukin-10 Secretion in Human Microglia (HMC3) via YAP-Mediated Mechanotransduction

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xue Fang, Haiying Jia, Shaoshan Pan, Qian Liu, Qian Wang, Ye Feng, Weiping Ding, Tianzhi Luo
{"title":"Matrix Stiffness Regulates Interleukin-10 Secretion in Human Microglia (HMC3) via YAP-Mediated Mechanotransduction","authors":"Xue Fang,&nbsp;Haiying Jia,&nbsp;Shaoshan Pan,&nbsp;Qian Liu,&nbsp;Qian Wang,&nbsp;Ye Feng,&nbsp;Weiping Ding,&nbsp;Tianzhi Luo","doi":"10.1002/cbf.70061","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Microglia, as resident immune cells in the brain, adhere to the extracellular matrix and typically exhibit anti-inflammatory polarization under normal physiological conditions. Despite their pivotal roles, the regulatory effects of extracellular matrix properties on microglial function and the associated molecular mechanisms remain inadequately understood. Here, we elucidate how matrix stiffness modulates interleukin-10 (IL-10) secretion in human microglia (HMC3) via yes-associated protein (YAP)-mediated mechanotransduction. Using soft collagen Ⅰ-coated hydrogels, we observed a substantial reduction in IL-10 secretion, accompanied by a decrease in the expression and nuclear localization of YAP compared to cells adhered to glass substrates. With increasing hydrogel substrate stiffness, the expression and nuclear localization of YAP were enhanced, leading to an elevated secretion of IL-10. Subsequently, to further investigate the relationship between YAP and IL-10, we performed YAP depletion experiments, which revealed that nuclear exclusion of YAP suppressed IL-10 secretion. Interestingly, overexpression of YAP in microglia did not markedly affect IL-10 levels. We seeded YAP-knockdown microglia onto hydrogels of varying stiffness, and no significant differences were observed in IL-10 secretion. Our findings suggested that cytoskeletal polymerization was crucial for the regulation of IL-10 secretion mediated by YAP. Given the crucial role of IL-10 in the tumor microenvironment, we further found shYAP-microglia attenuated the pro-proliferative effect of microglia on gliomas. Besides, when YAP was silenced, actin of human microglia decreased, and their contractility was weakened. In summary, this study identifies YAP as a pivotal molecule in controlling cytokine secretion and sensing matrix stiffness in microglia. These insights offer potential therapeutic avenues for glioma treatment by targeting YAP-mediated pathways in microglial cells.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microglia, as resident immune cells in the brain, adhere to the extracellular matrix and typically exhibit anti-inflammatory polarization under normal physiological conditions. Despite their pivotal roles, the regulatory effects of extracellular matrix properties on microglial function and the associated molecular mechanisms remain inadequately understood. Here, we elucidate how matrix stiffness modulates interleukin-10 (IL-10) secretion in human microglia (HMC3) via yes-associated protein (YAP)-mediated mechanotransduction. Using soft collagen Ⅰ-coated hydrogels, we observed a substantial reduction in IL-10 secretion, accompanied by a decrease in the expression and nuclear localization of YAP compared to cells adhered to glass substrates. With increasing hydrogel substrate stiffness, the expression and nuclear localization of YAP were enhanced, leading to an elevated secretion of IL-10. Subsequently, to further investigate the relationship between YAP and IL-10, we performed YAP depletion experiments, which revealed that nuclear exclusion of YAP suppressed IL-10 secretion. Interestingly, overexpression of YAP in microglia did not markedly affect IL-10 levels. We seeded YAP-knockdown microglia onto hydrogels of varying stiffness, and no significant differences were observed in IL-10 secretion. Our findings suggested that cytoskeletal polymerization was crucial for the regulation of IL-10 secretion mediated by YAP. Given the crucial role of IL-10 in the tumor microenvironment, we further found shYAP-microglia attenuated the pro-proliferative effect of microglia on gliomas. Besides, when YAP was silenced, actin of human microglia decreased, and their contractility was weakened. In summary, this study identifies YAP as a pivotal molecule in controlling cytokine secretion and sensing matrix stiffness in microglia. These insights offer potential therapeutic avenues for glioma treatment by targeting YAP-mediated pathways in microglial cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信