Mengke Kang, Xiang Zhang, Jingyi Wang, Wen Li, Tianyu Xue, Kun Zhai, Jianyong Xiang, Anmin Nie, Yingchun Cheng, Zhongyuan Liu
{"title":"Asymmetric charge distribution boosts hydrogen evolution performance in two-dimensional MoO2/MoS2 step heterostructure","authors":"Mengke Kang, Xiang Zhang, Jingyi Wang, Wen Li, Tianyu Xue, Kun Zhai, Jianyong Xiang, Anmin Nie, Yingchun Cheng, Zhongyuan Liu","doi":"10.1002/cey2.663","DOIUrl":null,"url":null,"abstract":"<p>Step heterostructures are predicted to hold a profound catalytic performance because of the rearranged electronic structure at their interface. However, limitations in the morphology of heterostructures prepared by hydrothermal reactions or molten salt-assisted strategies make it challenging to directly assess charge distribution and evaluate a single interface's hydrogen evolution reaction (HER) performance. Here, we prepared two-dimensional MoO<sub>2</sub>/MoS<sub>2</sub> step heterostructures with a large specific surface area by the chemical vapor deposition method. Surface Kelvin probe force microscopy and electrical transport measurement verified the asymmetric charge distribution at a single interface. By fabricating a series of micro on-chip electrocatalytic devices, we investigate the HER performance for a single interface and confirm that the interface is essential for superior catalytic performance. We experimentally confirmed that the enhancement of the HER performance of step heterostructure is attributed to the asymmetric charge distribution at the interface. This work lays a foundation for designing highly efficient catalytic systems based on step heterostructures.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 2","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.663","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Step heterostructures are predicted to hold a profound catalytic performance because of the rearranged electronic structure at their interface. However, limitations in the morphology of heterostructures prepared by hydrothermal reactions or molten salt-assisted strategies make it challenging to directly assess charge distribution and evaluate a single interface's hydrogen evolution reaction (HER) performance. Here, we prepared two-dimensional MoO2/MoS2 step heterostructures with a large specific surface area by the chemical vapor deposition method. Surface Kelvin probe force microscopy and electrical transport measurement verified the asymmetric charge distribution at a single interface. By fabricating a series of micro on-chip electrocatalytic devices, we investigate the HER performance for a single interface and confirm that the interface is essential for superior catalytic performance. We experimentally confirmed that the enhancement of the HER performance of step heterostructure is attributed to the asymmetric charge distribution at the interface. This work lays a foundation for designing highly efficient catalytic systems based on step heterostructures.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.