Paired kernels and truncated Toeplitz operators

IF 0.8 Q2 MATHEMATICS
M. Cristina Câmara, Jonathan R. Partington
{"title":"Paired kernels and truncated Toeplitz operators","authors":"M. Cristina Câmara,&nbsp;Jonathan R. Partington","doi":"10.1007/s43036-025-00426-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers paired operators in the context of the Lebesgue Hilbert space <span>\\(L^2\\)</span> on the unit circle and its subspace, the Hardy space <span>\\(H^2.\\)</span> The kernels of such operators, together with their analytic projections, which are generalizations of Toeplitz kernels, are studied. Inclusion relations between such kernels are considered in detail, and the results are applied to describing the kernels of finite-rank asymmetric truncated Toeplitz operators.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-025-00426-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00426-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers paired operators in the context of the Lebesgue Hilbert space \(L^2\) on the unit circle and its subspace, the Hardy space \(H^2.\) The kernels of such operators, together with their analytic projections, which are generalizations of Toeplitz kernels, are studied. Inclusion relations between such kernels are considered in detail, and the results are applied to describing the kernels of finite-rank asymmetric truncated Toeplitz operators.

成对核和截断的Toeplitz运算符
本文研究了单位圆上的Lebesgue Hilbert空间\(L^2\)及其子空间Hardy空间\(H^2.\)上的配对算子,研究了这类算子的核及其解析投影,即Toeplitz核的推广。详细考虑了这些核之间的包含关系,并将结果应用于有限秩非对称截断Toeplitz算子核的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信