D. Y. Shtatnova, M. I. Kobyakova, Ya. V. Lomovskaya, E. I. Fetisova, K. S. Krasnov, R. S. Fadeev
{"title":"Increased Drug Resistance in Acute lymphoblastic Leukemia Cells in Three-Dimensional High-Density Cell Cultures","authors":"D. Y. Shtatnova, M. I. Kobyakova, Ya. V. Lomovskaya, E. I. Fetisova, K. S. Krasnov, R. S. Fadeev","doi":"10.1134/S0006350924700775","DOIUrl":null,"url":null,"abstract":"<p>In this study, the development process of drug resistance in acute lymphoblastic leukemia cells (Jurkat, MOLT 3, and MOLT 4 cell lines) was examined in high-density cell cultures. It has been shown that in high- density cultures of acute lymphoblastic leukemia cells resistance to the action of chemotherapeutic drugs in- creases comparing to the cells cultured under low-density conditions. The results obtained after investigation of the mechanism underlying increased drug resistance in acute lymphoblastic leukemia cells in high-density cell cultures showed that an increase in drug resistance in high-density cultures of cells can be mediated by a change in their proliferative activity. These findings can be applied in developing a strategy to overcome drug resistance in acute lymphoblastic leukemia cells, which depends on the density of the cell culture.</p>","PeriodicalId":493,"journal":{"name":"Biophysics","volume":"69 4","pages":"692 - 696"},"PeriodicalIF":4.0330,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0006350924700775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the development process of drug resistance in acute lymphoblastic leukemia cells (Jurkat, MOLT 3, and MOLT 4 cell lines) was examined in high-density cell cultures. It has been shown that in high- density cultures of acute lymphoblastic leukemia cells resistance to the action of chemotherapeutic drugs in- creases comparing to the cells cultured under low-density conditions. The results obtained after investigation of the mechanism underlying increased drug resistance in acute lymphoblastic leukemia cells in high-density cell cultures showed that an increase in drug resistance in high-density cultures of cells can be mediated by a change in their proliferative activity. These findings can be applied in developing a strategy to overcome drug resistance in acute lymphoblastic leukemia cells, which depends on the density of the cell culture.
BiophysicsBiochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.20
自引率
0.00%
发文量
67
期刊介绍:
Biophysics is a multidisciplinary international peer reviewed journal that covers a wide scope of problems related to the main physical mechanisms of processes taking place at different organization levels in biosystems. It includes structure and dynamics of macromolecules, cells and tissues; the influence of environment; energy transformation and transfer; thermodynamics; biological motility; population dynamics and cell differentiation modeling; biomechanics and tissue rheology; nonlinear phenomena, mathematical and cybernetics modeling of complex systems; and computational biology. The journal publishes short communications devoted and review articles.