{"title":"Microfluidic biosensors: revolutionizing detection in DNA analysis, cellular analysis, and pathogen detection","authors":"Reza Didarian, Mehdi Tayybi Azar","doi":"10.1007/s10544-025-00741-6","DOIUrl":null,"url":null,"abstract":"<div><p>Microfluidic chips have emerged as versatile and powerful tools that enable the precise manipulation of fluids and bioparticles at the microscale. Their impact on detection applications is profound, offering advantages such as miniaturization, enhanced sensitivity, multiplexing capability, and integrated functions. These chips can be customized for specific techniques, such as DNA analysis, immunoassays, chemical sensing, and cell-based assays. With a wide range of types available, including Lab-on-a-Chip, droplet-based, paper-based, electrochemical, optical, and magnetic chips, they find applications in diverse fields such as medical diagnostics, DNA analysis, cell analysis, food safety testing, environmental monitoring, and industrial processes. This powerful technology replicates laboratory capabilities on miniature chip-scale devices, resulting in time and cost savings while enabling portability and field-use capability. Its impact spans genetic analysis, proteomic analysis, cell culture, biosensors, pathogen detection, and point-of-care diagnostics, playing a pivotal role in advancing chemical and biological analysis. The overall aim of this review is to provide an overview of the development of microfluidic biochips for biological detection and discuss their various applications.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00741-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidic chips have emerged as versatile and powerful tools that enable the precise manipulation of fluids and bioparticles at the microscale. Their impact on detection applications is profound, offering advantages such as miniaturization, enhanced sensitivity, multiplexing capability, and integrated functions. These chips can be customized for specific techniques, such as DNA analysis, immunoassays, chemical sensing, and cell-based assays. With a wide range of types available, including Lab-on-a-Chip, droplet-based, paper-based, electrochemical, optical, and magnetic chips, they find applications in diverse fields such as medical diagnostics, DNA analysis, cell analysis, food safety testing, environmental monitoring, and industrial processes. This powerful technology replicates laboratory capabilities on miniature chip-scale devices, resulting in time and cost savings while enabling portability and field-use capability. Its impact spans genetic analysis, proteomic analysis, cell culture, biosensors, pathogen detection, and point-of-care diagnostics, playing a pivotal role in advancing chemical and biological analysis. The overall aim of this review is to provide an overview of the development of microfluidic biochips for biological detection and discuss their various applications.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.