{"title":"Explainable Artificial Intelligence for Business and Economics: Methods, Applications and Challenges","authors":"Qi Lyu, Shaomin Wu","doi":"10.1111/exsy.70017","DOIUrl":null,"url":null,"abstract":"<p>In recent years, artificial intelligence (AI) has made significant strides in research and shown great potential in various application fields, including business and economics (B&E). However, AI models are often black boxes, making them difficult to understand and explain. This challenge can be addressed using eXplainable Artificial Intelligence (XAI), which helps humans understand the factors driving AI decisions, thereby increasing transparency and confidence in the results. This paper aims to provide a comprehensive understanding of the state-of-the-art research on XAI in B&E by conducting an extensive literature review. It introduces a novel approach to categorising XAI techniques from three different perspectives: samples, features and modelling method. Additionally, the paper identifies key challenges and corresponding opportunities in the field. We hope that this work will promote the adoption of AI in B&E, inspire interdisciplinary collaboration, foster innovation and growth and ensure transparency and explainability.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, artificial intelligence (AI) has made significant strides in research and shown great potential in various application fields, including business and economics (B&E). However, AI models are often black boxes, making them difficult to understand and explain. This challenge can be addressed using eXplainable Artificial Intelligence (XAI), which helps humans understand the factors driving AI decisions, thereby increasing transparency and confidence in the results. This paper aims to provide a comprehensive understanding of the state-of-the-art research on XAI in B&E by conducting an extensive literature review. It introduces a novel approach to categorising XAI techniques from three different perspectives: samples, features and modelling method. Additionally, the paper identifies key challenges and corresponding opportunities in the field. We hope that this work will promote the adoption of AI in B&E, inspire interdisciplinary collaboration, foster innovation and growth and ensure transparency and explainability.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.