Arti A. Ingle, Akash V. Fulari, Rameshwar B. Borade, S.B. Kadam, V. D. Mote, A. B. Kadam, Sagar E. Shirsath, R. H. Kadam
{"title":"Impact of Copper Substitution on the Structural Refinement, Magnetic Behaviour, and Dielectric Response of Ni–Zn Spinel Ferrites","authors":"Arti A. Ingle, Akash V. Fulari, Rameshwar B. Borade, S.B. Kadam, V. D. Mote, A. B. Kadam, Sagar E. Shirsath, R. H. Kadam","doi":"10.1134/S1063783424602078","DOIUrl":null,"url":null,"abstract":"<p>Ni<sub>0.5</sub>Zn<sub>0.5−<i>x</i></sub>Cu<sub><i>x</i></sub>Fe<sub>2</sub>O<sub>4</sub> (<i>x</i> = 0, 0.05, 0.1, 0.15, 0.2, 0.25) spinel ferrite nanoparticles were synthesized via the sol-gel auto-combustion method and sintered at 700°C for 5 h. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the thermal decomposition behaviour. Single phase ferrite with <i>Fd</i>‑3<i>m</i> space group was confirmed by the Rietveld refinement of X-ray diffraction data. The distribution of cation among octahedral B and tetrahedral A-site was estimated by the computational method. With increasing copper substitution, the lattice parameter decreased while X-ray density increased. Crystallite sizes ranged from 22 to 24 nm, consistent with the Williamson–Hall method, and strain decreased. Fourier-transform infrared (FTIR) spectroscopy confirmed the spinel structure. High-resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy (FE-SEM) showed grain sizes between 70 and 130 nm. Energy dispersive X-ray (EDAX) analysis confirmed chemical purity. Magnetic studies showed an increase in saturation magnetization and coercivity (42 to 57 Oe) with copper substitution, while dielectric behaviour followed the Maxwell–Wagner model.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 2","pages":"148 - 163"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424602078","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Ni0.5Zn0.5−xCuxFe2O4 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) spinel ferrite nanoparticles were synthesized via the sol-gel auto-combustion method and sintered at 700°C for 5 h. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the thermal decomposition behaviour. Single phase ferrite with Fd‑3m space group was confirmed by the Rietveld refinement of X-ray diffraction data. The distribution of cation among octahedral B and tetrahedral A-site was estimated by the computational method. With increasing copper substitution, the lattice parameter decreased while X-ray density increased. Crystallite sizes ranged from 22 to 24 nm, consistent with the Williamson–Hall method, and strain decreased. Fourier-transform infrared (FTIR) spectroscopy confirmed the spinel structure. High-resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy (FE-SEM) showed grain sizes between 70 and 130 nm. Energy dispersive X-ray (EDAX) analysis confirmed chemical purity. Magnetic studies showed an increase in saturation magnetization and coercivity (42 to 57 Oe) with copper substitution, while dielectric behaviour followed the Maxwell–Wagner model.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.