N. S. Martynenko, D. R. Temralieva, N. Yu. Tabachkova, O. V. Rybalchenko, E. A. Luk’yanova, A. V. Koltygin, S. V. Dobatkin
{"title":"Study Of Microstructure and Properties of Zn – 1% Mg – 0.1% Dy and Zn – 1% Mg – 0.1% Mn Alloys After High-Pressure Torsion","authors":"N. S. Martynenko, D. R. Temralieva, N. Yu. Tabachkova, O. V. Rybalchenko, E. A. Luk’yanova, A. V. Koltygin, S. V. Dobatkin","doi":"10.1007/s11041-025-01088-8","DOIUrl":null,"url":null,"abstract":"<p>The microstructure, mechanical properties and corrosion resistance of promising medical Zn – 1% Mg – 0.1% Dy and Zn – 1% Mg – 0.1% Mn alloys after high-pressure torsion (HPT) are studied. It is shown that the HPT results in formation of an ultrafine-grained structure of α-Zn with grain size 450 – 700 nm in both alloys. The grain-boundary magnesium phase is refined to a nanosize and Mn- and Dy-enriched particles are precipitated. This refinement of the structure leads to a simultaneous increase in the strength and ductility of both alloys without changing their corrosion resistance. At the same time, the corrosion rate of the alloys both before and after the HPT does not exceed 0.35 mm/year.</p>","PeriodicalId":701,"journal":{"name":"Metal Science and Heat Treatment","volume":"66 9-10","pages":"572 - 579"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science and Heat Treatment","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11041-025-01088-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructure, mechanical properties and corrosion resistance of promising medical Zn – 1% Mg – 0.1% Dy and Zn – 1% Mg – 0.1% Mn alloys after high-pressure torsion (HPT) are studied. It is shown that the HPT results in formation of an ultrafine-grained structure of α-Zn with grain size 450 – 700 nm in both alloys. The grain-boundary magnesium phase is refined to a nanosize and Mn- and Dy-enriched particles are precipitated. This refinement of the structure leads to a simultaneous increase in the strength and ductility of both alloys without changing their corrosion resistance. At the same time, the corrosion rate of the alloys both before and after the HPT does not exceed 0.35 mm/year.
期刊介绍:
Metal Science and Heat Treatment presents new fundamental and practical research in physical metallurgy, heat treatment equipment, and surface engineering.
Topics covered include:
New structural, high temperature, tool and precision steels;
Cold-resistant, corrosion-resistant and radiation-resistant steels;
Steels with rapid decline of induced properties;
Alloys with shape memory effect;
Bulk-amorphyzable metal alloys;
Microcrystalline alloys;
Nano materials and foam materials for medical use.