Mariana de Sousa Silva, Julia S. Passos, Regina G. Daré, Jessica R. Nunes, Patricia P. Adriani, Luciana B. Lopes
{"title":"Microemulsions Improve the Cutaneous Co-Localization of Lipoic Acid and Quercetin and Antioxidant Effects in Cutaneous Cells and Tissue","authors":"Mariana de Sousa Silva, Julia S. Passos, Regina G. Daré, Jessica R. Nunes, Patricia P. Adriani, Luciana B. Lopes","doi":"10.1208/s12249-025-03062-2","DOIUrl":null,"url":null,"abstract":"<div><p>Quercetin and α-lipoic acid are antioxidants with potential applications in the treatment of various skin conditions, such as wounds and chemoprevention of skin cancer. To enable their effective topical co-delivery and co-localization in the tissue, we developed microemulsions (ME). The selected ME (ME-50) formed a stable system with a mean droplet size of 134.4 ± 17.9 nm, increasing to 224.9 ± 19.9 nm upon antioxidants co-incorporation. The ME preserved the antioxidant capacities of the molecules, with DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay showing an IC<sub>50</sub> of 6.2 ± 0.1 µg/mL, similar to the solution. Skin penetration studies revealed a 2.4-fold increase in quercetin (Q) accumulation in the stratum corneum and a 3.5-fold increase in the delivery to viable epidermis and dermis (ED) after a 12 h-treatment with the ME compared to control solutions; α-lipoic acid (LA) penetration improved up to 1.9-fold in ED upon ME incorporation. Treatment with Q + LA co-loaded ME enhanced the antioxidant activity in the stratum corneum and ED by 1.3-fold and 2.0-fold, respectively, compared to solutions. Treatment with the ME for 24 h also reduced oxidative species levels by 55% in H<sub>2</sub>O<sub>2</sub>-exposed keratinocytes compared to the control (untreated) cells. Taken together, these results suggest that ME-50 is a promising delivery system for enhancing the cutaneous co-delivery of quercetin and α-lipoic acid and the antioxidant effects in the tissue, offering a potential topical treatment for oxidative stress-related skin conditions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03062-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Quercetin and α-lipoic acid are antioxidants with potential applications in the treatment of various skin conditions, such as wounds and chemoprevention of skin cancer. To enable their effective topical co-delivery and co-localization in the tissue, we developed microemulsions (ME). The selected ME (ME-50) formed a stable system with a mean droplet size of 134.4 ± 17.9 nm, increasing to 224.9 ± 19.9 nm upon antioxidants co-incorporation. The ME preserved the antioxidant capacities of the molecules, with DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay showing an IC50 of 6.2 ± 0.1 µg/mL, similar to the solution. Skin penetration studies revealed a 2.4-fold increase in quercetin (Q) accumulation in the stratum corneum and a 3.5-fold increase in the delivery to viable epidermis and dermis (ED) after a 12 h-treatment with the ME compared to control solutions; α-lipoic acid (LA) penetration improved up to 1.9-fold in ED upon ME incorporation. Treatment with Q + LA co-loaded ME enhanced the antioxidant activity in the stratum corneum and ED by 1.3-fold and 2.0-fold, respectively, compared to solutions. Treatment with the ME for 24 h also reduced oxidative species levels by 55% in H2O2-exposed keratinocytes compared to the control (untreated) cells. Taken together, these results suggest that ME-50 is a promising delivery system for enhancing the cutaneous co-delivery of quercetin and α-lipoic acid and the antioxidant effects in the tissue, offering a potential topical treatment for oxidative stress-related skin conditions.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.